期刊文献+

Structural Characterization of Volatile Components of Rosa Banksiae Ait for Estimation and Prediction of Their Linear Retention Indices and Retention Times 被引量:6

Structural Characterization of Volatile Components of Rosa Banksiae Ait for Estimation and Prediction of Their Linear Retention Indices and Retention Times
下载PDF
导出
摘要 The molecular electronegativity-distance vector (MEDV) was used to describe the molecular structure of volatile components of Rosa banksiae Ait, and QSRR model was built up by use of multiple linear regression (MLR). Furthermore, in virtue of variable screening by the stepwise multiple regression technique, the QSRR models of 10 and 6 variables and linear retention index (LRI) 10, 7 and 6 varieables were built up by combinating MEDV with the Ultra2 column GC retention time (tR) of 53 volatile components of Rosa Banksiae Air. The multiple correlation coefficients (R) of modeling calculation values of QSRR model were 0.906, 0.906, 0.949, 0.943 and 0.949, respectively. The cross-verification multiple correlation coefficients (RCV) were 0.903, 0.904, 0.867, 0.901 and 0.904, respectively. The results show that the models constructed could provide estimation stability and favorable predictive ability. The molecular electronegativity-distance vector (MEDV) was used to describe the molecular structure of volatile components of Rosa banksiae Ait, and QSRR model was built up by use of multiple linear regression (MLR). Furthermore, in virtue of variable screening by the stepwise multiple regression technique, the QSRR models of 10 and 6 variables and linear retention index (LRI) 10, 7 and 6 varieables were built up by combinating MEDV with the Ultra2 column GC retention time (tR) of 53 volatile components of Rosa Banksiae Air. The multiple correlation coefficients (R) of modeling calculation values of QSRR model were 0.906, 0.906, 0.949, 0.943 and 0.949, respectively. The cross-verification multiple correlation coefficients (RCV) were 0.903, 0.904, 0.867, 0.901 and 0.904, respectively. The results show that the models constructed could provide estimation stability and favorable predictive ability.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第4期391-396,共6页 结构化学(英文)
关键词 molecular electronegativity-distance vector (MEDV) DESCRIPTOR quantitative structure-retention relationship (QSRR) linear retention indices (LRI) molecular electronegativity-distance vector (MEDV), descriptor, quantitative structure-retention relationship (QSRR), linear retention indices (LRI)
  • 相关文献

参考文献10

  • 1Ivan, L. G.; Christopher, J. S. J. Chem. 1998, 2497-2506. 被引量:1
  • 2Liu, S. S.; Liu, Y.; Li, Z. L. J. Acta Chimica Sinica 2000, 1353-1357. 被引量:1
  • 3Liu, S. S.; Yin, C. S.; Wang, L. S. J. Chem. Inf. Comput. Sci. 2002, 749-756. 被引量:1
  • 4Sun, L. L.; Zhou, Y.; Li, G R. J. Mollus St. 2004, 107-113. 被引量:1
  • 5Sun, L. L.; Li, Z. L. J. Chemical Industry and Engineering (China) 2005, 203-208. 被引量:1
  • 6Liu, Y. X.; Yu, A. N. J. Fine Chemicals 2007, 782-785. 被引量:1
  • 7Sun, L. L.; Zhou, L. P.; Yu, Y. J. Chemosphere 2007, 1039-1051. 被引量:1
  • 8Liu, S. S.; Yin, C. S.; Wang, L. S J. Chem. Inf. Comput. Sci. 2002, 749-756. 被引量:1
  • 9Zhou, Y.; Sun, L. L.; Mei, H. J. Chromatogram 2006, 565-570. 被引量:1
  • 10Liu, S. S.; Liu, Y.; Yin, D. Q. J. Sep. Sci. 2006, 296-301. 被引量:1

同被引文献38

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部