期刊文献+

基于加权次梯度投影算法的数字助听器自适应声反馈抑制 被引量:6

Feedback Cancellation based on Weighted Adaptive Projection Subgradient Method in Hearing Aids
下载PDF
导出
摘要 本文提出了一种利用加权自适应次梯度投影算法(Weighted Adaptive Projection Subgridient Method,WAPSM)进行声反馈抑制的方案。WAPSM算法来自于自适应次梯度投影算法(Adaptive Projection Subgridient Method,APSM),它以次梯度投影的超平面作为搜索区域来进行松弛投影。本文提出的算法将估计系统的先验知识以权重因子一在很多应用中为指数衰减一的方式加入APSM算法中提高算法性能。以WAPSM算法应用于助听器声反馈抑制的大量仿真实验表明,算法相比传统的NLMS算法和APSM算法在收敛速度、稳定性和精度方面取得了显著的进展。进一步的实验表明,算法在以实际语音作为数字助听器输入信号时取得了优异的性能,并且在低信噪比条件下具有较强的鲁棒性。 Weighted adaptive projection subgradient method (WAPSM) is proposed in this paper for feedback cancellation in hearing aids. WAPSM is derived from the technique of adaptive projection subgradient method( APSM), which utilizes the subgradient projection hyperplanes as the searching area in the process of relaxed projection. In this paper weight factor - which is exponential decayed in most implementations - is added to APSM to incorporate a priori information. We applied this WAPSM algorithm for acoustic feedback cancellation in hearing aids. Numerical experiments demonstrate that notable improvements are achieved including speed, stability and accuracy of convergence compared to the traditional NLMS algorithm and APSM algorithm. Another exciting conclusion by further experiments is that WAPSM achieves excellent performance in the situation that real speech segment as input in hearing aids, and WAPSM is more robust for low SNR compared to other algorithms.
出处 《信号处理》 CSCD 北大核心 2009年第4期519-525,共7页 Journal of Signal Processing
基金 国家自然科学基金项目(No:60472058) 教育部博士点基金(No:20050286001) 教育部新世纪优秀人才支持计划(No:NCET-04-0483)
关键词 声反馈抑制 加权自适应次梯度投影算法 助听器 acoustic feedback cancellation weighted adaptive projection subgradient method(WAPSM) hearing aids
  • 相关文献

参考文献16

  • 1J. M. Kates. Feedback cancellation apparatus and methods. U. S. patent US6072884,2000. 被引量:1
  • 2Young-cheol Park, In-young Kim, Sang-rain Lee. An Efficient Adaptive Feedback Cancellation for Hearing Aids. Proc. IEEE EMBS, 2003,pp : 17-21. 被引量:1
  • 3S. Haykin. Adaptive Filter Theory. Upper Saddle River,NJ: Prentice-Hall, 1996. 被引量:1
  • 4G. Long, F. Ling, I. G. Proakis. The LMS algorithm with delayed coefficient adaptation. IEEE Trans. Acoustics,Speech, Signal Process,Sept. 1985, vol. 37 ,pp: 1391-1405. 被引量:1
  • 5Johan Hellgren. Analysis of Feedback Cancellation in Hearing Aids With Fihered-X LMS and the Direct Method of Closed loop Identification. IEEE Trans. Speech and Audio Process. ,Feb. 2002,vol. 10,no. 2,pp:119-131. 被引量:1
  • 6M. Rupp. The behavior of LMS and NLMS algorithms inthe presence of spherically invariant processes. IEEE Trans. Signal Process. , Mar. 1993,vol. 41, pp : 1149-1160. 被引量:1
  • 7S. G. Sankaran and A. A. Beex. Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process. , Apr. 2000, vol. 48, pp. 1086-1096. 被引量:1
  • 8S. L. Gay and S. Tavathia. The fast affine projection algorithm. Proc. IEEE ICASSP, 1995, pp. 3023-3026. 被引量:1
  • 9H. H. Bauschke and J. M. Borwein. On projection algo- rithms for solving convex feasibility problems. SIAM Rev. , 1996 ,vol. 38 ,no. 3 ,pp. 367-426. 被引量:1
  • 10Patrick L. Combettes. Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. , Apr. 1997,6 (4) : 493 -506. 被引量:1

同被引文献31

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部