期刊文献+

四元数代数Z_n[i,j,k]的素谱和根(英文) 被引量:1

The Spectra and Radicals of Quaternion Algebra Z_n[i,j,k]
下载PDF
导出
摘要 Zn上的四元数环Zn[i,j,k]是一个Zn上的代数.该文研究Zn[i,j,k]的相关性质并证明Zn[i,j,k]是一个局部环当且仅当n为2的方幂.并且,完全确定了Zn[i,j,k]的极大单边理想,极大双边理想,素谱和Jacobson根. The ring of quaternions over Zn which is denoted by Zn[i, j, k] is a quaternion algebra. In this paper, we investigate the properties of Zn[ i, j, k ] and it is shown that Zn[ i, j, k ] is a local ring if and only if n = 2' with t ≥1. We oompletdy determine the maximal one- sided ideals, maximal two- sided ideals, the prime spectrum and the Jacobson radical of Zn[ i, j, k ].
出处 《广西师范学院学报(自然科学版)》 2009年第1期1-10,共10页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 This research was supported by the National Natural Science Foundation of China(10771095) the Guangxi Science Foundation(0575052,0640070,0832107) the Innovation Project of Guangxi Graduate Education(2007106030701 M15) the Scientifc Research Foundation of Guangxi Educational Committee(200707LX233).
关键词 四元数代数 极大理想 极大单边理想 素谱 JACOBSON根 quaternion algebra maximal ideal maximal one-sided ideal prime spectrum Jacobson radical
  • 相关文献

参考文献12

  • 1ZHANG F Z. Quatemions and matrices of quaternions[J]. Linear Algebra and Its Applications, 1997, 251: 21-57. 被引量:1
  • 2SER6DIO R, SIU LOK - SHUN. Zeros of quatemion polynomials[J ]. Applied Mathematices Letters, 2001, 14: 237-239. 被引量:1
  • 3SERoDIO R, PEREIRA E, VIToRIA J. Computing the zercs of quaterinon polynomials[J]. Computers and Mathematics with Applications, 2001, 42:1229-1237. 被引量:1
  • 4HUANG L, SO W. Quadratic formulas for quaternions[J]. Applied Mathematices Letters, 2002, 15. 533-540. 被引量:1
  • 5FAREBROTHER R W, GROβ Jiirgen, TROSCHKE Sven-Oliver. Matrix representation of quaternions[J]. Linear Algebra and its Applications, 2003, 362 : 251-255. 被引量:1
  • 6SU H D, TANG G H. The prime spectrum and zerodivisor of Zn [ i ] [J]. Journal of Guangxi Teachers Education University, 2006, 23(4) : 1-4. 被引量:1
  • 7TANG G H, SU H D, ZHAO Shou-xiang. The properties of zero-divisor graph of Z, [ i ] [J]. Journal of Guangxi Normal University, 2007,25(3) :32-35. 被引量:1
  • 8KOBAYASHI Y, KOH K. A classification of finite rings by zero divisors[J]. Journal of Pure and Applied Algebra, 1986, 40 : 135-147. 被引量:1
  • 9MIMES C P, SEHGAL S K. An Introduction to Group Rings[M]. Kluwer Academic Publishers, 2002. 被引量:1
  • 10PAN C D, PAN C B. Elementary Number Theory[M]. 2nd ed. Beijing. Beijing University Publishing Company, 2005. 被引量:1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部