摘要
Zn上的四元数环Zn[i,j,k]是一个Zn上的代数.该文研究Zn[i,j,k]的相关性质并证明Zn[i,j,k]是一个局部环当且仅当n为2的方幂.并且,完全确定了Zn[i,j,k]的极大单边理想,极大双边理想,素谱和Jacobson根.
The ring of quaternions over Zn which is denoted by Zn[i, j, k] is a quaternion algebra. In this paper, we investigate the properties of Zn[ i, j, k ] and it is shown that Zn[ i, j, k ] is a local ring if and only if n = 2' with t ≥1. We oompletdy determine the maximal one- sided ideals, maximal two- sided ideals, the prime spectrum and the Jacobson radical of Zn[ i, j, k ].
出处
《广西师范学院学报(自然科学版)》
2009年第1期1-10,共10页
Journal of Guangxi Teachers Education University(Natural Science Edition)
基金
This research was supported by the National Natural Science Foundation of China(10771095)
the Guangxi Science Foundation(0575052,0640070,0832107)
the Innovation Project of Guangxi Graduate Education(2007106030701 M15)
the Scientifc Research Foundation of Guangxi Educational Committee(200707LX233).