摘要
基于构造辅助函数在高等数学解题中的重要性,针对微分中值命题中值存在与方程根存在的问题,提出三种构造函数的方法:常数变易法、直接构造法、联想公式或定理构造法,并结合实例说明构造函数在解题过程中的重要作用。
Based on the importance of constructing auxiliary function in advanced mathematics, aiming at the problems in the existence of the differential mean-value proposition, and of the equation root, three construction methods of function are put forward: constant variation method, direct construction method and associating formula or theorem construction method, and combined with examples the important role of construction function in problem-solving process is explained.
出处
《闽西职业技术学院学报》
2009年第1期82-84,共3页
Journal of Minxi Vocational and Technical College
关键词
辅助函数
中值定理
高等数学
auxiliary function
mean-value theorem
advanced mathematics