期刊文献+

BP神经网络的联合优化算法 被引量:20

Joint-optimization algorithm of BP neural network
下载PDF
导出
摘要 针对BP神经网络存在收敛速度慢、易陷入局部极小等缺陷,提出了一种自适应调节学习率和动态调整S型激励函数相结合的改进BP算法。该算法将学习率与误差函数相关联,再对每个隐单元和输出单元的激励函数的斜率进行自动调整。通过实例仿真,将改进算法与标准BP算法、加动量项法和自适应学习率法进行比较,来验证所提出方法的有效性。实验结果表明,联合优化的BP算法能有效加快网络的收敛过程,并具有较强的泛化能力。 In view of the BP neural network existence convergence rate slow and easy to fall into local minimum,this paper presents an adaptive learning rate adjustment and dynamic adjustment S-type activation function combination of improved BP algorithm.The proposed algorithm connects the learning rate with the error function and the slope of the activation function of each hidden and output unit is automatically adjusted.Finally through the example simulation,the validity of the proposed method is verified compared to the standard BP algorithm,the momentum method and adaptive learning rate method.The experimental results show that the joint optimization of BP algorithm can effectively speed up the network convergence process and has strong generalization ability.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第12期50-51,54,共3页 Computer Engineering and Applications
关键词 BP算法 学习率 误差函数 激励函数 back-propagation algorithm learning rate error function activation function
  • 相关文献

参考文献8

二级参考文献27

  • 1向国全,董道珍.BP模型中的激励函数和改进的网络训练法[J].计算机研究与发展,1997,34(2):113-117. 被引量:28
  • 2张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1992.. 被引量:21
  • 3肖本政 江辑光 肖达川.BP学习算法改进的理论依据[A]..全国神经网络大会论文集[C].北京:科教出版社,1993.282-286. 被引量:1
  • 4Parlos A G.An accelerated learning algorithm for multiplayer perceptron networks[J].IEEE Trans on Neural Networks,1994,5(3):86-88. 被引量:1
  • 5Ho K L, Hsu Y Y, Yang C C.STLF using a multilayer neural network with an adaptive learning algorithm[J].IEEE Trans on PS,1992,7(1):141-149. 被引量:1
  • 6Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J].IEEE Trans on Neural Networks,1994,5(1):39-53. 被引量:1
  • 7Hirose Y.BP algorithm which varies the number of hidden units[J].Neural Network,1991,4(1):61-66. 被引量:1
  • 8Hagan M T,Menhaj M B.Trainning feed forward networks with the Marquardt algorithm[J]. IEEE Trans on Neural Networks,1994,5(6):989-993. 被引量:1
  • 9Rigler A K,Irvine J M, Vogl T P.Rescaling of variables in BP learning[J].Neural Network,1991,4(2):225-229. 被引量:1
  • 10Lee HahnMing, Chen ChihMing, Huang TzongChing. Leaming efficiency improvement of back-propagation algori-thm by error saturation prevention method. Neurocomputing,2002, 41:125 - 143 被引量:1

共引文献59

同被引文献139

引证文献20

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部