期刊文献+

Minor and Minimum Cycle Bases of a 3-connected Planar Graph 被引量:1

Minor and Minimum Cycle Bases of a 3-connected Planar Graph
原文传递
导出
摘要 In this paper, we prove that if any set of |E(G)|- |V(G)| + 1 facial cycles of a 3-connected planar graph G embedded in the plane doesn't form a minimum cycle base of G, then any minimum cycle base of G contains a separating cycle, and G has a minor isomorphic to T6, where T6 is the graph obtained from the complete graph K6 by deleting a path with four edges. In this paper, we prove that if any set of |E(G)|- |V(G)| + 1 facial cycles of a 3-connected planar graph G embedded in the plane doesn't form a minimum cycle base of G, then any minimum cycle base of G contains a separating cycle, and G has a minor isomorphic to T6, where T6 is the graph obtained from the complete graph K6 by deleting a path with four edges.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第4期649-656,共8页 数学学报(英文版)
关键词 cycle space minimum cycle base 3-connected planar graph cycle space, minimum cycle base, 3-connected planar graph
  • 相关文献

参考文献1

二级参考文献22

  • 1[11]Holzmann,C.A.,Harary,F.,On the tree graph of a matroid,SIAM J.Appl.Math.,1972,22:187-193. 被引量:1
  • 2[12]Liu,G.Z.,On the connectivities of tree graphs,J.of Graph Theory,1988,12:453-454. 被引量:1
  • 3[13]Chua,L.O.,Chen,L.,On optimally sparse cycle and coboundary basis for a linear graph,IEEE Trans.Circuit Theory,1973,CT-20:495-503. 被引量:1
  • 4[14]Cassell,A.C.,Henderson,J.C.,Ramachandran,K.,Cycle bases of minimum measure for the structural analysis of skeletal structures by the flexibility method,Proc.Roy.Soc.London,Ser.A,1976,350(1976):61-70. 被引量:1
  • 5[15]Kaveh,A.,Structural Mechanics:Graph and Matrix Methods,Exeter:Research studies Press,1992,23-40. 被引量:1
  • 6[16]Downs,G.D.,Valerie,J.G.,Holliday,J.D.et al.,Review of ring perception algorithms for chemical graphs,J.Chem.Inf.Comput.Sci.,1989,29:172 187. 被引量:1
  • 7[17]Freierm,S.M.,Kierzek,R.,Jaeger,J.A.et al.,Improved free-energy parameters for predictions of RNA duplex stability,Proc.Natl.Acad.Sci.(USA),1986,83:9373-9377. 被引量:1
  • 8[18]Horton,J.D.,A polynomial-time algorithm to find the shortest cycle base of a graph,SIAM.J.Comput.,1987,16:359-366. 被引量:1
  • 9[19]Thomassen,C.,Embeddings of graphs with no short noncontractible cycles,J.of Combin.Theory,Ser.B,1990,48:155-177. 被引量:1
  • 10[20]Hall,P.,On representatives of subsets,London Math.Soc.,1935,10:26-30. 被引量:1

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部