期刊文献+

Philos-type Oscillation Theorems for Second Order Damped Elliptic Equations

Philos-type Oscillation Theorems for Second Order Damped Elliptic Equations
原文传递
导出
摘要 Using general means, we establish several new Philos-type oscillation theorems for the second order damped elliptic differential equationΣi,j=1 N Di[aij(x)Djy]+Σi=1 N bi(x)Diy+c(x)f(y)=0under quite general assumptions. The obtained results are extensions of the well-known oscillation results due to Kamenev, Philos, Yan for second order linear ordinary differential equations and improve recent results of Xu, Jia and Ma. Using general means, we establish several new Philos-type oscillation theorems for the second order damped elliptic differential equationΣi,j=1 N Di[aij(x)Djy]+Σi=1 N bi(x)Diy+c(x)f(y)=0under quite general assumptions. The obtained results are extensions of the well-known oscillation results due to Kamenev, Philos, Yan for second order linear ordinary differential equations and improve recent results of Xu, Jia and Ma.
作者 Zhi-ting Xu
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期291-304,共14页 应用数学学报(英文版)
基金 Supported by the Natural Science Foundation of Guangdong Province(No.8451063101000730).
关键词 Oscillation elliptic differential equations second order DAMPED Oscillation elliptic differential equations second order damped
  • 相关文献

参考文献20

  • 1Erbe, L., Kong, Q., Ruan, S. Kamenev-type theorems for second-order matrix differential system. Proc. Amer. Math. Soc., 117:957-962 (1993) 被引量:1
  • 2Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc., 19:341-352 (1918) 被引量:1
  • 3Gilbarg, D., Trudinger, N.S. Elliptic partial differential equations of second order. Spinger-Verlag, New York, 1983 被引量:1
  • 4Hardy, G., Littlewood, J.E., Polya, G. Inequalities, Second Edition. Combridge Mathematical Library, 1988 被引量:1
  • 5Hartman, P. On nonoscillatory linear differential equations of second order. Amer. J. Math., 74:389-400 (1952) 被引量:1
  • 6Kamenev, I.V. An integral criterion for oscillation of linear differential equations of second order. Mat. Zamtki., 23:249-251 (1978) (in Russian) 被引量:1
  • 7Kong, Q. Interval criteria for oscillation of second order linear ordinary differential equations. J. Math. Anal Appl., 229:258-270 (1999) 被引量:1
  • 8Medico, A.D., Kong, Q. Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain: J. Math. Anal Appl., 294:621-643 (2004) 被引量:1
  • 9Noussair, E.S., Swanson, C.A. Oscillation of semilinear elliptic inequalities by Riccati transformation. Canad. J. Math., 32(4): 908-923 (1980) 被引量:1
  • 10Philos, Ch.G. Oscillation theorems for linear differential equations of second order. Arch. Math (Basel)., 53:482-492 (1989) 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部