期刊文献+

基于FIS的煤矿智能安检信息管理系统的开发研究

The Development of A Coal Mine Intelligent Safety Monitoring Management System based on Fuzzy Inference System
下载PDF
导出
摘要 针对当前煤炭行业的安全生产和管理现状,开发了一套高智能化、高可靠性的煤矿智能安检信息管理系统。在Windows 2000环境下,建立基于MATLAB软件平台下的模糊推理系统(FIS),利用C#与MATLAB语言混合编程及引擎调用技术,对矿井环境中瓦斯浓度进行模糊推理预测,并利用自适应神经模糊推理系统(ANFIS)模块对FIS结构进行优化训练,结合专家知识库提供在线事故原因分析和相应措施;同时利用Simulink模块库,结合虚拟现实技术,模拟井下动态采掘过程。系统在运行结构上分为实时数据采集显示、历史数据查询与维护、统计历史数据图形、显示打印数据报表、专家决策执行、报警停机六个部分。 In view of current safety product and administrate situation of coal industry, so it is indispensable to develop coal mine intelligent safety monitoring system, and it also should be high intelligentzing and reliability. This system is under Windows 2000, using the skills of program mixing C # and MATLAB, establish a fuzzy inference system on MATLAB software platform, and make fuzzy inference and forecast to the gas in the mine environment. Also using the ANFIS module of MATLAB to train the FIS structure, to get further structure optimizing, combining the expert experience to analyze the reason of accident on line; at meantime, we can also build dynamic system model on Simulink platform through VRML method to reappear the situation of the coal mine so as to process the real - time monitoring. In running structure, the intelligent monitoring system consists of five modules: the real - time monitoring and displaying, query, deletion and maintenance of history data, graphic statistic, report printing, expert diagnosis and decision - making support module. This system research, development and promoted application will provide the safeguard regarding the mine pit security work.
出处 《煤炭工程》 北大核心 2009年第4期104-107,共4页 Coal Engineering
关键词 煤矿信息管理系统 FIS ANFIS C# SIMULINK仿真 coal mine monitoring management system fuzzy inference system adaptive neuro -fuzzy inference system C sharp simulink simulation
  • 相关文献

参考文献13

  • 1Vincent H, Y. Tam and Brian Corr. Development of a limit state approach for design against gas explosions [ J ]. Journal of loss prevention in the process industries. 1993, (32) 12:34-42. 被引量:1
  • 2Saridis G N. Knowledge Implementation: Structure of Intelligent Control System. IEEE Intemational Symposium on Intelligent Control, 1987. 被引量:1
  • 3Lee C C. Fuzzy Logic in Control System: Fuzzy Logic Controller IEEE Trans on SMC, 1990, 20(2). 被引量:1
  • 4Peng W. Ananlysis and Synthesis is of Fuzzy Intelligent Control System. Ph. D Thesis, Hong Kong Polytechnic, 1993. 被引量:1
  • 5S. Shao. Fuzzy Self - Organizing Controller and Its Application for Dynamic Processes. Fuzzy Sets and Systems, 1999, 26. 被引量:1
  • 6窦振中.模糊逻辑控制技术及其应用[M].北京:航空航天大学出版社,2003. 被引量:1
  • 7陈克力.SQL Server2000编程基础[M].北京:清华大学出版社,2004. 被引量:1
  • 8楼顺天,胡昌华,张伟.基于Matalab的系统分析与设计[M].西安:西安电子科技大学出版社,2003. 被引量:1
  • 9David M Peterson. Microsoft′s. NET framework: New platform for software development [J]. Business Communications Review, 2002, 32(11): 57-63. 被引量:1
  • 10云巅工作室.Visualc#中文全面剖析[M].北京:中国水利水电出版社,2003. 被引量:1

二级参考文献10

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部