摘要
在锥序Banach空间中利用集值映射的上图导数引进了强有效意义下的广义梯度,在下C-半连续条件下,利用凸集分离定理证明了该广义梯度的存在性,由此建立了集值向量优化问题强有效解在广义梯度下的最优性条件.
The concept of the generalized gradient in sense of strong effciency is introduced by epiderivative for a set-valued map in ordered Banach spaces . Under the condition of lower semicontinuous, its existence is proved by the separation theorem for convex sets;Thus the optimality condition of strong-efficient solution of set-valued optimization problems is established in the sense of generalized gradient.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2009年第1期47-51,共5页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
江西省自然科学基金(0611081)资助项目
关键词
集值映射
上图导数
强有效性
广义梯度
最优性条件
set-valued optimization
epiderivative
strong-effciency
generalized gradient
optimality condition