期刊文献+

用广义梯度刻画集值优化的强有效解 被引量:2

The Characterization of Strong-Efficient Solution of Set-Valued Vector Optimization with Generalized Gradient
下载PDF
导出
摘要 在锥序Banach空间中利用集值映射的上图导数引进了强有效意义下的广义梯度,在下C-半连续条件下,利用凸集分离定理证明了该广义梯度的存在性,由此建立了集值向量优化问题强有效解在广义梯度下的最优性条件. The concept of the generalized gradient in sense of strong effciency is introduced by epiderivative for a set-valued map in ordered Banach spaces . Under the condition of lower semicontinuous, its existence is proved by the separation theorem for convex sets;Thus the optimality condition of strong-efficient solution of set-valued optimization problems is established in the sense of generalized gradient.
作者 傅湧
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第1期47-51,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金(0611081)资助项目
关键词 集值映射 上图导数 强有效性 广义梯度 最优性条件 set-valued optimization epiderivative strong-effciency generalized gradient optimality condition
  • 相关文献

参考文献9

二级参考文献19

  • 1李声杰.S-凸集值映射的次梯度和弱有效解[J].高校应用数学学报(A辑),1998,13(4):463-472. 被引量:5
  • 2董加礼.不可微多目标优化[J].数学进展,1994,23(6):517-528. 被引量:8
  • 3史树中.非光滑分析[J].数学进展,1986,15(1):9-12. 被引量:5
  • 4程永红.局部凸空间中的强有效性.南昌大学硕士学位论文[M].-,1997.. 被引量:1
  • 5杨新民 汪寿阳 等.关于集值映射向量优化的有效性.多目标决策进展’98[M].香港:香港广宇咨讯服务有限公司,1998.12-16. 被引量:2
  • 6史树中.完备向量格的凸集分离定理及其应用[J].数学年刊:A辑,1985,6(4):431-438. 被引量:3
  • 7王苏生.半序线性空间的凸集分离定理及其应用[J].应用数学学报,1986,9(3):310-318. 被引量:1
  • 8Cheng Y H, Fu W T. Strong Efficiency in a Locally Convex Space[J ]. Math Meth Oper Rea, 1999, 50:373 - 384. 被引量:1
  • 9Yang X M, Li D and Wang S Y. Nearly-Subeonvexlikeness in Vector Optimization with Set-Valued Functions[J] .J Optim Theory Appl, 2001, 110(2) :413 - 427. 被引量:1
  • 10Rong Weidong, Wu Yunan. Characterizations of Super Efficiency in Cone- Convexlike Vector Optimization with Set-Valued Maps[J]. Math Meth Oper Rea, 1998, 48:247-258. 被引量:1

共引文献59

同被引文献12

  • 1喻建华,胡彬.一类广义强向量拟均衡问题[J].江西师范大学学报(自然科学版),2008,32(4):418-420. 被引量:2
  • 2Smeulder A, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence,2000,22(12) : 1349-1380. 被引量:1
  • 3Kendall M. A new measure of rank correlation [ J ]. Biometrika, 1938,30 ( 1/2 ) : 81-93. 被引量:1
  • 4World Health Organization. The world health report:life in the 21^st century : a vision for all [ M ]. Netherland : Geneva, 1998. 被引量:1
  • 5Weinberger K, Blitzer J, Saul L. Distance metric learning for large margin nearest neighborhood classification [ C ]. Vancouver: Neural Information Processing Systems, 2005 : 265-272. 被引量:1
  • 6Weston J. Leave-one-out support vector machines [ C ]. Stockholm:International Joint Conferences on Artificial Intelligence, 1999 : 727 -733. 被引量:1
  • 7Chapelle O, Vapnik V, Bousquet O, et al. Choosing multi- ple parameters for support vector machines [ J ]. Machine Learning ,2002,46 ( 1/3 ) : 131-159. 被引量:1
  • 8Gold C, Sollich P. Model selection for support vector ma- chine classification [ J ]. Neurocomputing, 2003,55 ( 1/ 2) :221-249. 被引量:1
  • 9Xing E, Ng A, Jordan M, et al. Distance metric learning with application to clustering with side-information [ C ]. Vancouver: Neural Information Processing Systems, 2002: 505 -512. 被引量:1
  • 10马永成,肖诗斌,林春雨,施水才.基于内容的文档图像检索的特征抽取研究[J].江西师范大学学报(自然科学版),2008,32(2):138-141. 被引量:9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部