期刊文献+

Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine 被引量:1

Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine
下载PDF
导出
摘要 The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine,and the precision and reliability of the fault classification results can meet the requirement of practical application.It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine. The performance of the support vector machine models depends on a proper setting of its parameters to a great ex- tent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期127-133,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 supported by the National Nature Science Foundation of China under Grant 60506055
关键词 最小二乘支持向量机 粒子群优化算法 故障诊断 旋转机械 混沌 多故障分类 神经网络训练 最佳参数 support vector machine particle swarm optimization chaos fault diagnosis
  • 相关文献

参考文献1

二级参考文献2

共引文献534

同被引文献14

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2兰亚,吴渝,王国胤,董蓓.基于滑动窗口的优化贝叶斯邮件过滤算法[J].重庆邮电学院学报(自然科学版),2006,18(4):528-531. 被引量:4
  • 3李洋,方滨兴,郭莉,田志宏.基于主动学习和TCM-KNN方法的有指导入侵检测技术[J].计算机学报,2007,30(8):1464-1473. 被引量:31
  • 4中国互联网协会反垃圾邮件中心.2008年第三次中国反垃圾邮件状况调查报告[EB/OL].(2008-10-28)[2010-01-17].http://www.anti-spam.cn/pdf/2008_03_dc.pdf. 被引量:1
  • 5ANDROUTSOPOULOS I,PALIOURAS G,KARKALETSIS V,et a1.Learning to filter spam e-mail:a comparison of a nave Bayesian and a memory based approach[C] //ZIGHED Djamel A,KOMOROWSKI Jan,ZYTKOW Jan.Proc 4th European Conference on Principles and Practice of Knowledge Discovery in Databases(PKDD 2000).Lyon,France:Springer,2000:1-13. 被引量:1
  • 6CARRERAS X,MARQUEZ L.Boosting trees for anti-spam email filtering[C] //MITKOV Ruslan.Proceedings of Euro Conference Recent Advances in NLP (RANLP2001).Tzigov Chark,Bulgaria:Johu Benjamins Publishing Co,2001:58-64. 被引量:1
  • 7SAHAMI M,DUMAIS S,HECKERMAN D,et a1.A Bayesian approach to filtering junk e-mail[C] //MOSTOW Jack,RICH Charles.Proc of AAAI Workshop on Learning for Text Categorization.Madison,Wisconsin:Springer,1998:55-62. 被引量:1
  • 8YI Y,LI C,SONG W.Email classification Using Semantic FeatureSpace[C] //SUN Maosong.2008 International Conference on Advanced Language Processing and Web Information Technology.Liaoning,China:Computer Society Press,2008:32-37. 被引量:1
  • 9TONG B,QIN Z,MA X,et al.Som Classification Method Based On Transduction Scheme[C] //IEEE.International Conference on Apperceiving Computing and Intelligence Analysis 2008(ICACIA′08).Chengdu,China:IEEE,2008:12-15. 被引量:1
  • 10WANG Lei,KHAN Latifur,THURAISINGHAM Bhavani.An Effective Evidence Theory based K-nearest Neighbor (KNN)classification[C] //IEEE.International Conference on Web Intelligence and Intelligent Agent Technology.Sydney,Australia:IEEE,2008:797-801. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部