摘要
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine,and the precision and reliability of the fault classification results can meet the requirement of practical application.It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.
The performance of the support vector machine models depends on a proper setting of its parameters to a great ex- tent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.
出处
《重庆邮电大学学报(自然科学版)》
北大核心
2009年第2期127-133,共7页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
supported by the National Nature Science Foundation of China under Grant 60506055