期刊文献+

应用层异常检测方法研究 被引量:2

Research on Application Level Anomaly Detection
下载PDF
导出
摘要 目前绝大部分异常检测方法只利用数据包的头部信息来检测网络攻击,即仅仅从网络层、传输层来分析网络的异常情况。而研究表明现在的网络攻击主要发生在应用层,因此从应用层来分析网络异常的研究就显得十分重要。首先介绍了入侵检测和异常检测的研究现状,突出强调了应用层异常检测的重要性,接着详细介绍了目前几种主要的应用层异常检测方法,最后讨论了应用层异常检测所面临的挑战。 Most of the network anomaly detection approaches are based on packet header fields,while the payload is usually discarded, namely they detect network attacks only from network layer and transport layer. Unfortunately, most of today's attacks happen on the application level, so the research of the application level anomaly detection is very important. We first introduced the current status of intrusion detection and network anomaly detection, and emphasized the importance of the application level anomaly detection. Then we introduced the main approaches of the application level anomaly detection in detail. Finally we discussed the challenges of the application level anomaly detection.
出处 《计算机科学》 CSCD 北大核心 2009年第4期21-24,52,共5页 Computer Science
基金 国家高技术研究发展计划("863"计划)(2007AA01Z449) 国家自然科学基金-广东联合基金重点项目(U0735002)资助
关键词 应用层 异常检测 网络安全 Application level, Anomaly detection, Network security
  • 相关文献

参考文献24

  • 1CNNIC.第21次中国互联网络发展状况统计报告[R].http://www.cnnic.net.cn/uploadfiles/pdf/2008/1/17/104156.pdf,2008 被引量:2
  • 2Levy E. Approaching Zero[J]. IEEE Security & Privacy Magazine, 2004,2 (4) : 65-66 被引量:1
  • 3Binkley J R, Singh S. An Algorithm for Anomaly-based Botnet Detection[C]///SRUTI'06 : 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet. San Jose, USA: 2006 : 43-48 被引量:1
  • 4Villamarin-salomon R, Brustoloni J C. Identifying Botnets Using Anomaly Detection Techniques Applied to DNS Traffic[C]// Fifth IEEE Consumer Communications & Networking Conference. Las Vegas, Nevada, USA, 2008: 476-481 被引量:1
  • 5Pateha A,Park J M. An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends[J]. Computer Networks:The International Journal of Computer and Telecommunications Networking, 2007,51 (12) : 3448-3470 被引量:1
  • 6Wang H J, Guo C, Simon D R, et al. Shield.. Vulnerability-Driven Network Filters for Preventing Known Vulnerability Exploits [J]. ACM SIGCOMM Computer Communication Review, 2004, 34(4) :193-204 被引量:1
  • 7Lazarevic A, Ertoz L, Kumar V, et al. A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection[C]//SIAM International Conference on Data Mining. Cathedral Hill Hotel, San Francisco, USA, 2003 : 25-36 被引量:1
  • 8Lippmann R, Haines J W, Fried D J, et al. The 1999 DARPA Off-line Intrusion Detection Evaluation [J]. Computer Networks, 2000,34(4): 579-595 被引量:1
  • 9谢逸,余顺争.应用层洪泛攻击的异常检测[J].计算机科学,2007,34(8):109-111. 被引量:6
  • 10Kr C, Toth T, Kirda E. Service Specific Anomaly Detection for Network Intrusion Detection [C]//Proceedings of the 2002 ACM symposium on Applied Computing. Madrid, Spain, 2002: 201-208 被引量:1

二级参考文献9

  • 1Douligeris C,Mitrokotsa A.DDoS attacks and defense mechanisms:classification and state-of-the-art[J].Computer Networks:The International Journal of Computer and Telecommunications Networking,2004,44(5):643-666 被引量:1
  • 2Amza C,Cecchet E,Chanda A,et al.Bottleneck characterization of dynamic web site benchmarks[R]:[Technical Report TR-02-391].Rice University,February 2002.online:http://rubis.objectweb.org/download/ dyna-bottleneck.pdf 被引量:1
  • 3Ranjan S,Karrer R,Knightly E.Wide area redirection of dynamic content by internet data centers[A].In:the Proceeding of INFOCOM 2004.Volume 2,March 2004.816-826 被引量:1
  • 4Chatterjee P,Joffman D,Novak T.Modeling the clickstream:Implications for Web-based advertising efforts[J].Marketing Science,2003,22:520-541 被引量:1
  • 5Bürklen S,Marrón P J,Fritsch S,et al.User Centric Walk:An Integrated Approach for Modeling the Browsing Behavior of Users on the Web[A].In:the Proceedings of the 38th Annual Simulation Symposium (ANSS'05),April 2005.149-159 被引量:1
  • 6Dill S,Kumar R,Mccurley K S.Self-Similarity in the Web[J].ACM Transactions on Internet Technology,2002,2(3):205-223 被引量:1
  • 7Rabiner L R.A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[A].Proceeding of IEEE,February 1989,77(2):257-286 被引量:1
  • 8Yu S Z,Kobayashi H.An Efficient Forward-Backward Algorithm for an Explicit Duration Hidden Markov Model[J].IEEE Signal Processing Letters,2003,10(1):11-14 被引量:1
  • 9Yu S Z,Liu Z,Squillante M S,et al.A Hidden Semi-Markov Model for Web Workload Self-Similarity[A].In:Proceedings of The 21st IEEE International Performance,Computing,and Communications Conference (IPCCC 2002).Phoenix,AZ.April 2002.65-72 被引量:1

共引文献6

同被引文献21

  • 1谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 2李金明,王汝传.基于VTP方法的DDoS攻击实时检测技术研究[J].电子学报,2007,35(4):791-796. 被引量:18
  • 3Patcha A,Park J M. An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends[J ].Computer Networks: The International Journal of Computer and Telecommunications Networking,2007,S 1 (12):3448-3470. 被引量:1
  • 4Wang H J,Guo C,Simon D K, et al. Shield:Vulnerability-Driven Network Filters for Preventing Known Vulnerability Exploits [J]. ACM SIGCOMM Computer Communication Review,2004, 34 (4) :193-204. 被引量:1
  • 5Lazarevic A,Ertoz L,Kumar V,et al. A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection [C]//SIAM International Conference on Data Mining. Cathedral Hill Hotel,San Francisco,USA,2003:25-36. 被引量:1
  • 6许治昆等,网络渗透技术[M],北京:电子工业出版社,2006. 被引量:1
  • 7谢逸,余顺争.应用层洪泛攻击的异常检测[J].计算机科学,2007,34(8):109-111. 被引量:6
  • 8Worldwide Infrastructure Security Report 2010 [EB/OL]. ht- tp://www, arbornetworks, eom/report. 被引量:1
  • 9Yu J, Fang C, Lu L, et al. A Lightweight Mechanism to Mitigate Application Layer DEk Attacks[J]. Scalable Information Sys- tems, 2009,18 : 175-191. 被引量:1
  • 10Xie Y, Yu S Z. Monitoring the Application-Layer DDoS Attacks for Popular Websites[J]. IEEE/ACM Transactions on Networ- king, 2009,17(1) : 15-25. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部