期刊文献+

改进蚁群算法在交通系统最短路径问题的研究 被引量:12

Study of Modified Ant Colony Algorithm on Shortest Path Problem of Traffic System
下载PDF
导出
摘要 求解交通路网中两点间的最短路径是智能交通系统中的一个重要功能,为了更为准确快速地找到最优解,这里分析Dijkstra算法处理动态车辆路径问题中的缺陷,提出一种改进的蚁群算法,即在基本蚁群算法中引入搜索方向和搜索热区机制提高算法的搜索性能。通过建立改进蚁群算法模型,用VC 6.0开发工具,以实际交通地图为例,求解交通网络两点间最短距离;并与基本蚁群算法进行对比。仿真实验表明,传统蚁群算法的平均迭代次数为71.06,改进蚁群算法平均迭代次数为55.82,比传统蚁群算法有了明显的提高。该方法能有效解决交通系统最短路径问题,具有一定的实际意义和参考价值和实际意义。 Searching shortest path of the transportation network is one of the most important functions of ITS,in order to find the optimization path accurately and rapidly,disadvantages of using Dijkstra algorithm to deal with dynamic shortest path and a kind of modified ant colony algorithm are analysed and proposed,in which the mechanism of search direction and search hot section are introduced to improve searching performance. Through building modified ant colony algorithm model, using VC6.0 developing tool, for a example with actual traffic map, resolving the shortest path of the transportation network and contrasting the ant colony algorithm. Simulated experiments show that:average iterative times using the ant colony algorithm is 71.06, average iterative times using the modified ant colony algorithm is 55.82, the latter improved obviously. The modified ant colony algorithm can resolve the shortest path problem of traffic system of reference value and actual meaning.
机构地区 沈阳化工学院
出处 《现代电子技术》 2009年第8期76-78,共3页 Modern Electronics Technique
关键词 蚁群算法 最短路径 信息素 智能交通系统 ant colony algorithm shortest path pheromone intelligent traffic system
  • 相关文献

参考文献8

二级参考文献33

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:15
  • 3王俭,肖金球,王林芳.一种改进的机器人路径规划蚂蚁算法[J].微计算机信息,2005,21(5):53-54. 被引量:5
  • 4康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997.. 被引量:1
  • 5[1]Dorigo M,Maniezzo V,Colorni A.Ant System:Optimization by a Colony of Cooperation Agents[J].IEEE Transactions on Systems,Man,and Cybernetics,1996,26(1):29-41 被引量:1
  • 6[5]约翰 霍兰著,陈禹等译.涌现-从混沌到有序[M].上海:上海科学技术出版社,2001 被引量:1
  • 7[6]约翰 霍兰著,周小牧,韩晖译.隐秩序-适应性造就复杂性[M].上海:上海科技教育出版社,2000. 被引量:1
  • 8M Dorigo,V Maniezzo and A Colorni.Positive feedback as a search strategy[R].Technical Report 91-016,Dipartimento di Elettronica,Politecnico di Milano,IT,1991. 被引量:1
  • 9M Dorigo,G Di Caro and L M Gambardella.Ant algorithms for discrete optimization[J].Artificial Life,1999,5(2):137-172. 被引量:1
  • 10M Dorigo and L M Gambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computations,1997,1(1):53-66. 被引量:1

共引文献270

同被引文献62

引证文献12

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部