期刊文献+

DISCRIMINATIVE REGULARIZATION:A NEW CLASSIFIER LEARNING METHOD

判别性正则化:一种新颖的分类器学习方法(英文)
下载PDF
导出
摘要 A novel regularization method -- discriminative regularization (DR)is presented. The method provides a general way to incorporate the prior knowledge for the classification. By introducing the prior information into the regularization term, DR is used to minimize the empirical loss between the desired and actual outputs, as well as maximize the inter-class separability and minimize the intra-class compactness in the output space simultane- ously. Furthermore, by embedding equality constraints in the formulation, the solution of DR can solve a set of linear equations. Classification experiments show the superiority of the proposed DR. 提出了一种新颖的正则化方法—判别性正则化(Discriminative regularization,DR),为分类提供了一种通用的结合样本先验信息的方式。通过将先验信息引入到正则化项中,DR不但使分类器实际输出与期望输出之间的经验损失达到最小,而且能在输出空间中同时最大化类间散性与最小化类内紧性。此外,通过将等式约束嵌入到目标函数中,DR的求解还可转化为解线性方程组问题,从而得到全局解析解。分类实验验证了DR的优越性。
作者 薛晖
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期65-74,共10页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(60773061) the Natural Science Foundation of Jiangsu Province(BK2008381)~~
关键词 discriminant analysis classification of information pattern recognition 判别分析 信息分类 模式识别
  • 相关文献

参考文献3

  • 1Bernard Haasdonk,Hans Burkhardt. Invariant kernel functions for pattern analysis and machine learning[J] 2007,Machine Learning(1):35~61 被引量:1
  • 2Theodoros Evgeniou,Massimiliano Pontil,Tomaso Poggio. Regularization Networks and Support Vector Machines[J] 2000,Advances in Computational Mathematics(1):1~50 被引量:1
  • 3J.A.K. Suykens,J. Vandewalle. Least Squares Support Vector Machine Classifiers[J] 1999,Neural Processing Letters(3):293~300 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部