期刊文献+

形变Boussinesq方程的对称群及其行波解 被引量:2

Symmetry group analysis and similarity solutions of variant Boussinesq equation
下载PDF
导出
摘要 讨论具有方程组形式的形变Boussinesq方程的对称群及其行波解.通过研究方程组所允许的Lie对称群得到该方程组的解有行波解,并将方程组约化为非线性的常微分方程组,再利用广义Tanh方法,得到形变Boussinesq方程的行波解. To study the symmetry group properties and similarity solutions of the variant Boussinesq equation in the form of system of nonlinear partial differential equations. Lie symmetry group analysis of the variant Boussinesq equation presents that the similarity solution are only in the form of the traveling wave solutions. The symmetry groups yield the general reduced similarity form of the system , which is in the system of nonlinear ordinary differential equations. By using the improved tanh function method, the similarity solutions are obtained from the reduced system of equations.
作者 冯玮 高雯
出处 《纯粹数学与应用数学》 CSCD 2009年第1期107-111,共5页 Pure and Applied Mathematics
基金 国家自然科学基金(10671156).
关键词 形变Boussinesq方程 Lie对称群 行波解 广义Tanh方法 variant Boussinesq equation, Lie symmetry group, improved tanh function method
  • 相关文献

参考文献7

  • 1Olver P J. Application of Lie Groups to Differential Equations[M]. Springer-Verlag,1986. 被引量:1
  • 2Bluman G W, Kumei S. Symmetries and Differential Equations[M]. Berlin:Springer,1989. 被引量:1
  • 3Whitham G B. Nonlinear and Nonlinear Wave[M]. New York:Acadamic,1973. 被引量:1
  • 4Fan E G. Extended tanh-function method and its applications to nonlicar equations[J]. Physics Letter A,2000; 277:212-218. 被引量:1
  • 5Chen H T, Zhang H Q. New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation[J]. Chaos, Solitons and Fractals,2004;19:71-76. 被引量:1
  • 6Fan E G, Zhang H Q. A note on the homogenous balance method[J]. Physics Letters A.1998;246:403-406. 被引量:1
  • 7Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations[J]. Physics Letters A,1996;216:65-75. 被引量:1

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部