期刊文献+

用倒拆修正法计算拱桥施工扣索索力与预抬量 被引量:10

Solution on Cable Force and Segmental Camber in Arch Bridge Construction by Modified Inverted Method
下载PDF
导出
摘要 以在建的大宁河大桥为工程背景,开展拱肋吊装过程扣索索力和预抬量的优化分析。提出了引入索力罚系数的修正倒拆法,推导了罚系数的计算公式,利用ANSYS建立了相应的倒拆分析模型。计算结果表明,该方法具有计算精度高的优点,与实测结果吻合良好。 Taking Da-ning River Bridge in construction as the engineering background, the optimization analysis of cable forces and segmental cambers has been carried out during the process of arch rib segmental installment. A modified inverted mcthod including cable force penalty factor is put forward, a formula of calculating penalty factor is deduced, and a corresponding FEA model is established by ANSYS. The analytical result shows that this method is of high accuracy, and the restilts of this method are in good accordance with those got in practice.
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2009年第2期199-202,227,共5页 Journal of Chongqing Jiaotong University(Natural Science)
基金 重庆市交委重点科研项目(WFKY-003-40117)
关键词 大宁河大桥 拱肋安装 优化数学模型 罚系数 倒拆修正法 扣索索力 预抬量 Da-ning River Bridge arch rib installation OPT mathematical model penalty factor modified inverted method cable force segmental camber
  • 相关文献

参考文献5

二级参考文献27

  • 1杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设,1989,19(3):11-17. 被引量:85
  • 2周汉东 许晓锋 黄福伟.大跨度钢管混凝土拱桥钢管拱肋吊装施工控制[J].哈尔滨建筑大学学报,1995,28:87-92. 被引量:1
  • 3MU Shengjing, SU Hongye, WANG Yuexuan, et al. An efficient evolutionary multi-objective optimization algorithm [A]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC2003) [C]. Canberra: IEEE Press, 2003,914 - 920. 被引量:1
  • 4Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proceedings of the First International Conference on Genetic Algorithms [C].Lawrence Erlbaum: IEEE Press, 1985, 93 - 100. 被引量:1
  • 5Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multiohjective Optimization [R]. Sheffield:Department of Automatic Control and Systems Engineering,University of Sheffield, 1994. 被引量:1
  • 6Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221-248. 被引量:1
  • 7Veldhuizen D A V. Multiobjective evolutionary Algorithms:Classification, Analyses, and New Innovations [D].Dayton: Air Force Institute of Technology Air University,1999. 被引量:1
  • 8Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195. 被引量:1
  • 9Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization [R]. KanGAL report, 200002, Kanpur : Indian Institute Technology, 2002. 被引量:1
  • 10Michalewicz Z, Dasgupta D, Le R, et al. Evolutionary algorithm for constrained engineering problems [J].Computers & Industrial Engineering, 1996, 30(4) :861 - 87O. 被引量:1

共引文献248

同被引文献65

引证文献10

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部