摘要
Numerical computation of turbulent strongly-swirling flows in combustors is presented. Turbulence models examined are based on the transport equations of the Reynolds stresses, i.e., the second moment closures. The particular flows in question include confined as well as free swirling situations where the swirl number is large. It is indicated that the second-moment closure models offer an effective means for predicting strongly swirling flows. In particular, the isotropization of production and convection (IPC) model gives the best overall performance. The study directly serves for the improvement of combustor design.
Numerical computation of turbulent strongly-swirling flows in combustors is presented. Turbulence models examined are based on the transport equations of the Reynolds stresses, i.e., the second moment closures. The particular flows in question include confined as well as free swirling situations where the swirl number is large. It is indicated that the second-moment closure models offer an effective means for predicting strongly swirling flows. In particular, the isotropization of production and convection (IPC) model gives the best overall performance. The study directly serves for the improvement of combustor design.