摘要
A micromechanism in an atomic level of crystallization of transition metal-metalloid TM(80)M(20) metallic glass is thermodynamically proposed by taking Bernal polyhedra as the starting structure of metallic glass. It is composed of two competitively processes: (i) densification process of atom cluster leads to the formation of the precursor in amorphous matrix; (ii) the growth of atom cluster leads to the decreasing packing density. The preferential precipitation sequence of metastable phase is bcc, bet, cpc (close-packed crystal, hcp or fee structure). A metastable phase decomposition (Fe,Mo)(23)B-6 (fcc)-Fe2B highly strained bet phase was observed during crystallization of (Fe(0.99)M(0.01))(78)Si9B13 metallic glass, which is related to the occurrence of nanocrystalline.
A micromechanism in an atomic level of crystallization of transition metal-metalloid TM(80)M(20) metallic glass is thermodynamically proposed by taking Bernal polyhedra as the starting structure of metallic glass. It is composed of two competitively processes: (i) densification process of atom cluster leads to the formation of the precursor in amorphous matrix; (ii) the growth of atom cluster leads to the decreasing packing density. The preferential precipitation sequence of metastable phase is bcc, bet, cpc (close-packed crystal, hcp or fee structure). A metastable phase decomposition (Fe,Mo)(23)B-6 (fcc)-Fe2B highly strained bet phase was observed during crystallization of (Fe(0.99)M(0.01))(78)Si9B13 metallic glass, which is related to the occurrence of nanocrystalline.