摘要
在电网络理论[1.2]中,考虑约束方程AX+y=b,X∈L,y∈L⊥,其中A∈Cn×n,子空间,b∈Cn.当A有小扰动矩阵E,b有小扰动△b时,存在x,y满足(A+E)x+y=b十△b,x∈L,y∈L⊥,本文给出双扰动约束方程的扰动分析,并证明了条件数在理论解x和扰动解x的相对误差界中的最优性,改进了文献[8]中的结果.
For a constrained system Ax + y = b, x∈L,y∈L, where A ∈ Cn×n, a subspace L Cn, and b ∈Cn, if A has a small perturbation matrix E, b has a small perturbation b, then x, y satisfy(A + E)x + y = b + b,x∈ L,y∈ L, Such systems are discussed in electrical network theory[1,2].This paper gives the perturbation analysis of the doubly perturbed system, an.d shows that the condition number of relative error bounds of the theoretical solution x and f the perturbation solution x is the minimum in some sense, which improves previous results[8].
出处
《上海师范大学学报(自然科学版)》
1996年第2期9-14,共6页
Journal of Shanghai Normal University(Natural Sciences)
关键词
约束方程
扰动解
条件数
constrained system
condition number
perturbation solution