摘要
将带有正交异性板的多室箱形梁桥分成板单元(包括盖板与腹板)和梁(包括角梁或腹板梁)两种宏单元,其板单元采用二维应力函数给出的应力与位移解析表达式,承受动力(或静力)荷载的角梁或带有曲线预应力钢索的腹板梁单元采用 Duhamel 积分得到动力位移和内力的表达式,板单元的质量采用堆聚集中在梁上。根据单元边界上的纵向线应变与侧向曲率两个形变协调条件求出单元边界上的面力系数,由此可以得到梁上承受动力(或静力)荷载时整个结构的应力与位移解析解答和剪力滞后系数。与动力有限无计算正交异板梁结构相比。本文的宏单元法简单、方便并且快速,当采用后张法无粘结曲线预应力钢索时可用于计算梁桥的主动控制。
With mass and loads lumped on beams,the deck-plate of a box girder bridge is simplified to plane stress problem,while the dynamic solution of the beam can be obtained through Fourier series and Duhamel integral.The multicell box girder bridge with stiffened deck-plates and curvedly posttensioned prestressing cables in webs is separated into two kinds of macroelements:orthotropic plate and web beam(or edge beam).The analytical expression of internal forces and displacements of orthotropic plates in general boundary conditions for plane stress problem is derived according to Airy stress function in Fourier series,then the analytical solution of stress distribution of multicell box girder bridges with dynamic(or static)loads applied on beams are presented on basis of the deformation compatibility of the plates and beams. The results are in agreement with that of experiments and other methods.
出处
《宁波大学学报(理工版)》
CAS
1997年第1期44-63,共20页
Journal of Ningbo University:Natural Science and Engineering Edition
关键词
动力分析
解析法
多室箱梁桥
正交异性板
剪力滞后
主动控制
box girder bridge
dynamic response
curvedly prestressing cable
orthotropic plate
composite cross-section
macroelement method