摘要
The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.
The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.
基金
This work was supported by the National Science Foundation of China