摘要
本文利用J.Mikusinski算符演算的直接方法,定义算符系数的移动算符幂级数间的乘积,并证明其在Mikusinski收敛意义下是正确的。由此我们获得了n阶常系数线性差分微分方程的级数形式解。
This paper uses the direct method of Mikusinski′s operational calculus, defining the products between a set of the special shifting operator power series with operator coefficients, and this is true in Mikusinski′s convergence which be proved. Then we got the series type solution of the n-th order difference differential equation with constant coefficients, and the sevies type solution is only the limited sum in any limited interval.
出处
《安徽建筑工业学院学报(自然科学版)》
1997年第1期62-65,共4页
Journal of Anhui Institute of Architecture(Natural Science)
基金
安徽教委科研基金