期刊文献+

ARNOLDI TYPE ALGORITHMS FOR LARGE UNSYMMETRICMULTIPLE EIGENVALUE PROBLEMS 被引量:4

ARNOLDI TYPE ALGORITHMS FOR LARGE UNSYMMETRIC MULTIPLE EIGENVALUE PROBLEMS
原文传递
导出
摘要 As is well known, solving matrix multiple eigenvalue problems is a very difficult topic. In this paper, Arnoldi type algorithms are proposed for large unsymmetric multiple eigenvalue problems when the matrix A involved is diagonalizable. The theoretical background is established, in which lower and upper error bounds for eigenvectors are new for both Arnoldi's method and a general perturbation problem, and furthermore these bounds are shown to be optimal and they generalize a classical perturbation bound due to W. Kahan in 1967 for A symmetric. The algorithms can adaptively determine the multiplicity of an eigenvalue and a basis of the associated eigenspace. Numerical experiments show reliability of the algorithms. As is well known, solving matrix multiple eigenvalue problems is a very difficult topic. In this paper, Arnoldi type algorithms are proposed for large unsymmetric multiple eigenvalue problems when the matrix A involved is diagonalizable. The theoretical background is established, in which lower and upper error bounds for eigenvectors are new for both Arnoldi's method and a general perturbation problem, and furthermore these bounds are shown to be optimal and they generalize a classical perturbation bound due to W. Kahan in 1967 for A symmetric. The algorithms can adaptively determine the multiplicity of an eigenvalue and a basis of the associated eigenspace. Numerical experiments show reliability of the algorithms.
出处 《Journal of Computational Mathematics》 SCIE EI CSCD 1999年第3期257-274,共18页 计算数学(英文)
关键词 Arnoldi's process large unsymmetric matrix multiple eigenvalue DIAGONALIZABLE error bounds Arnoldi's process large unsymmetric matrix multiple eigenvalue diagonalizable error bounds
  • 相关文献

同被引文献18

  • 1Zhongxiao Jia.Generalized block Lanczos methods for large unsymmetric eigenproblems[J]. Numerische Mathematik . 1998 (2) 被引量:1
  • 2Zhongxiao Jia.A block incomplete orthogonalization method for large nonsymmetric eigenproblems[J]. BIT Numerical Mathematics . 1995 (4) 被引量:1
  • 3K. Meerbergen,A. Spence,D. Roose.Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices[J]. BIT . 1994 (3) 被引量:1
  • 4Diem Ho.Tchebychev acceleration technique for large scale nonsymmetric matrices[J]. Numerische Mathematik . 1989 (7) 被引量:1
  • 5A. Ruhe.Rational krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs. Linear Algebra and Its Applications . 1994 被引量:1
  • 6Chatelin,F.,Godet-Thobie,S.,Durand,M.,Dabaghi,F. E. Stability analysis in aeronautical industries . 1991 被引量:1
  • 7Ho,D.Tchebychev acceleration technique for large scale nonsymmetric matrices. Numerical Mathematics . 1990 被引量:1
  • 8Saad,Y.,K?gstr?m,B.,Ruhe,A.Projection methods for solving large sparse eigenvalue problems. Matrix Pencils, Proceedings Pitea Havsbad . 1983 被引量:1
  • 9DC Sorensen.Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications . 1992 被引量:1
  • 10Saad,Y.Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Mathematics of Computation . 1984 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部