期刊文献+

Nontrivial homoclinic orbits for second-order singular and periodic Hamiltonian systems 被引量:1

Nontrivial homoclinic orbits for second-order singular and periodic Hamiltonian systems
原文传递
导出
摘要 The existence of nontrivial homoclinic orbits of periodic Hamiltonian systems: is proved, where q=(q<sub>1</sub>,q<sub>2</sub>,’',q<sub>n</sub>), n】2; V(t, q):R<sup>1</sup>×R<sup>n</sup>\{e}→R<sup>1</sup> is a potential With a singularity, i.e. -V(t, q)→+∞, as q→e. The main assumptions are Gordon-strong force condion and the uniqueness of a global maximum of V(t, q). The existence of nontrivial homoclinic orbits of periodic Hamiltonian systems:q + V′q(t, q) = 0 is proved, whereq = (q 1,q 2,...,q n),n> 2;V(t, q): ?1 × ?n |e| → ?1 is a potential with a singularity, i.e. -V(t, q)→+∞, asq→e. The main assumptions are Gordon-strong force condion and the uniqueness of a global maximum ofV(t, q).
出处 《Chinese Science Bulletin》 SCIE EI CAS 1999年第2期123-129,共7页
关键词 HAMILTONIAN systems strong force condition HOMOCLINIC orbit. Hamiltonian systems strong force condition homoclinic orbit
  • 相关文献

参考文献8

  • 1Paul H. Rabinowitz.Homoclinic and heteroclinic orbits for a class of Hamiltonian systems[J]. Calculus of Variations and Partial Differential Equations . 1993 (1) 被引量:1
  • 2P. Caldiroli,P. Montecchiari.Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Comm. Appl. Nonlinear Anal . 1994 被引量:1
  • 3Gordon W B.Conservative dynamical systems involving strong forces. Transactions of the American Mathematical Society . 1975 被引量:1
  • 4Rabinowitz,P. H.Multihump solutions of differential equations: an overview. Chinese Journal of Mathematics . 1996 被引量:1
  • 5Tanaka K.Homoclinic orbits for a singular second order Hamiltonian system. Ann Inst H Poincare Anal Nonlineaire . 1990 被引量:1
  • 6Greco C.Periodic soiutions of a class of singular Hamiltonian systems.Nolinear Analysis. T.M.A . 1988 被引量:1
  • 7Rabinowitz P H.Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. Calculus of Variations and Partial Differential Equations . 1993 被引量:1
  • 8Coti Zelati, V.,Rabinowitz, P.Multibump periodic of a family of Hamihonian systems. Topol. Mathods Nonlinear Anal . 1995 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部