摘要
In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules.
In situ Raman spectroscopic and voltammetric studies indicate that dissociative adsorption of methanol on the rough platinum electrode occurs in the hydrogen ad/desorption potential range, and the dissociative extent depends on the initial potential of the electrode before contacting methanol, in addition to the contacting time. As the dissociative product, carbon monoxide competes the site of strongly bound hydrogen preferentially, and shifts the ad/desorption potentials of weakly bound hydrogen towards more positive ones gradually with the increase of CO coverage. Whereas, formaldehyde dissociates more easily by far and completely suppresses H-adsorption. The confocal Raman spectroscopy developed on transition metals shows some intriguing advantages in investigating electrocatalytic oxidation of small organic molecules.
基金
Financial support by the National Natural Science Foundation of China (29833060
29903009
20073012)
and Visiting Scholar Foundation in State Key Labs of Ministry of Education of China
is gratefully acknowledged.