期刊文献+

WEIGHTED LEAST SQUARE CONVERGENCE OF LAGRANGE INTERPOLATION ON THE UNIT CIRCLE

WEIGHTED LEAST SQUARE CONVERGENCE OF LAGRANGE INTERPOLATION ON THE UNIT CIRCLE
下载PDF
导出
摘要 In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting vertically the zeros of (1-x)2=P (a,β) n(x),a>0,β>0,(1-x)P(a,β) n(x),a>0,β>-1,(1+x)P P(a,β) n(x),a>-1,β0 and P(a,β) n(x),a>-1,β>-1, respectively, onto the unit circle, where P(a,β) n(x),a>-1,β>-1, stands for the n-th Jacobi polynomial. Moreover, a result of Saff and Walsh is also extended. In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting vertically the zeros of (1-x)2=P (a,β) n(x),a>0,β>0,(1-x)P(a,β) n(x),a>0,β>-1,(1+x)P P(a,β) n(x),a>-1,β0 and P(a,β) n(x),a>-1,β>-1, respectively, onto the unit circle, where P(a,β) n(x),a>-1,β>-1, stands for the n-th Jacobi polynomial. Moreover, a result of Saff and Walsh is also extended.
出处 《Analysis in Theory and Applications》 2001年第3期60-68,共9页 分析理论与应用(英文刊)
基金 NSFC under grant1 0 0 71 0 3 9 and by Education Committee of Jiangsu Province under grant0 0 KJB1 1 0 0 0 5 .
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部