期刊文献+

基于ERDAS IMAGINE软件的快鸟影像融合研究 被引量:11

QuickBird image fusion using ERDAS IMAGINE software.
下载PDF
导出
摘要 该文采用PCA变换与IHS变换对快鸟的多光谱、全色影像进行融合处理.图像的处理全过程均在ERDASIMAGINE 8.5中完成.影像的统计特征评价均值、标准差在ERDAS IMAGINE 8.5中完成,熵、联合熵的计算应用Matlab编程完成.经计算两种变换后影像的联合熵均大于原图像,其中以PCA融合处理后的联合熵(15.865)最大.各波段的均值、标准差也与原多光谱影像相近,因此该试验中PCA变换最佳,不但保留了多光谱的特性,还融进了全色波段的高分辨率特征. Based on the transforming of IHS and PCA,fusion process of multi——spectrum and panchromatic image was studied in this paper.The whole image processing,characteristic evaluation,average value and standard deviation were treated with ERDAS IMAGINE 8.5.Coefficients entropy and cross entropy were processed by Matlab Programme.The value of entropy,which was 15.865,processed by PCA was the highest and both of IHS and PCA had higher entropy values than primary image.Average values and standard deviation of all bands processed by PCA and IHS were almost equal to that of primary image.Results show that the PCA transforming is the best way of fusion processing and it not only maintains the characteristics of multi-spectrum,but also fuses the high resolution characteristics of panchromatic bands.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2007年第S2期181-184,共4页 Journal of Beijing Forestry University
基金 国家自然科学基金(90302014)
关键词 ERDASIMAGINE IHS PCA 快鸟影像 影像融合 ERDAS IMAGINE,IHS,PCA,QuickBird,image fusion
  • 相关文献

参考文献9

二级参考文献42

  • 1章毓晋.图像处理和分析[M].清华大学出版社,1999,3.. 被引量:146
  • 2Vrabel J.Multi-spectral Imagery Advanced Band Sharpening Study[J].PE&RS,2000,66(1):73-79. 被引量:1
  • 3Kumar A S,Kartikeyan B,Majumdar K L.Band Sharpening of IRS Multispectral Imagery by Cubic Spine Wavelets[J].INT J Remote Sensing,2000,21 (3):581-594. 被引量:1
  • 4姜丹.信息论和编码(第1版)[M].合肥:中国科技大学出版社,2001.. 被引量:1
  • 5Li J. Spatial Quality Evaluation of Fusion of Different Resolution Images[C]. International Archives of the Photogrammetry and Remote Sensing, Amsterdam, 2000 被引量:1
  • 6Wang Q, Sheng Y, Zhang Y. A Quantitative Method to Evaluate the Performance of Hyperspectral Data Fusion[C]. IEEE Instrumentation and Measurement Technology Conference,Anchorage, 2002 被引量:1
  • 7Shannon C E. A Mathematical Theory of Communication[J].Bell System Technical Journal, 1948,27: 379 ~ 423; 623 ~ 656 被引量:1
  • 8Alejandra U D, Miguel V R. Determining the Dimensionality of Hyperspectral Imagery[C]. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, Orlando,2003 被引量:1
  • 9孙家,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997. 被引量:3
  • 10Shannon C E.A Mathematical Theory of Communication[J].Bell System Technical Journal,1948,27:379-423; 623-656 被引量:1

共引文献111

同被引文献88

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部