期刊文献+

用户兴趣对个性化推荐的影响 被引量:1

Effects of User Tastes on Personalized Recommendation
下载PDF
导出
摘要 利用用户-产品二部分图中度量同类节点相似性的加权映射方法,研究了用户的兴趣对基于物质扩散的个性化推荐算法的影响并提出了相应的改进算法,其中用户的兴趣定义为用户所选择过产品的平均度。该算法中在推荐过程中假设用户收集产品被赋予的推荐强度应由用户的兴趣点和产品自身的度一起决定。数值实验结果显示该算法可以提高原物质扩散算法的准确度。进一步,当数据集稀疏的时候,算法应该赋予与用户兴趣点相近的产品更大的推荐强度;随着数据集变得越来越稠密,应该赋予用户的兴趣点外的其他产品更多的权重以提高算法的准确度和推荐列表差异性。 Based on a weighted projection of the user-object bipartite network,the effects of user tastes on the mass-diffusion-based personalized recommendation algorithm are studied,where a user tastes or interests are defined by the average degree of the objects he has collected.It is assumed that the initial recommendation power located on the objects should be determined by both of their degree and the users tastes.By introducing a tunable parameter,the user taste effects on the configuration of initial recommendation power distribution are investigated.The numerical results show that the presented algorithm could improve the accuracy,measured by the average ranking score,more importantly.When the data is sparse,the algorithm should give more recommendation power to the objects whose degrees are close to the users tastes,while when the data becomes dense,it should assign more power on the objects whose degrees are significantly different from user's tastes.
出处 《控制工程》 CSCD 北大核心 2010年第S1期59-61,65,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(70972059,70671016,10905052,70901010)
关键词 个性化推荐 二部分图 基于网络结构的推荐算法 personalized recornmendation bipartite network network-based recommendation algorithm
  • 相关文献

参考文献17

  • 1Michael J. Pazzani.A Framework for Collaborative, Content-Based and Demographic Filtering[J]. Artificial Intelligence Review . 1999 (5-6) 被引量:1
  • 2Michael Pazzani,Daniel Billsus.Learning and Revising User Profiles: The Identification of Interesting Web Sites[J]. Machine Learning . 1997 (3) 被引量:1
  • 3Sun D,Zhou T,Liu J G,et al.Information filtering based ontransferring similarity. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2009 被引量:1
  • 4Zhou T,Ren J,Medo M,et al.Bipartite network projection andpersonal recommendation. Physical Review E Statistical Nonlinear and Soft Matter Physics . 2005 被引量:1
  • 5Brin S,Page L.The anatomy of a large-scale hypertextual web search engine. Computer Networks . 1998 被引量:1
  • 6Kleinberg JM.Authoritative sources in a hyperlinked environment. Journal of the ACM . 1999 被引量:1
  • 7Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems . 2004 被引量:1
  • 8Konstan J,Miller B,Maltz D,et al.GroupLens: applying collaborative filtering to usenet news. Communications of the ACM . 1997 被引量:1
  • 9Balabanovic M,Shoham Y.Fab: Content-Based, Collaborative Recommendation. Communications of the ACM . 1997 被引量:1
  • 10Zhang G Q,Yang Q F,Cheng S Q,et al.Evolution of the internet and its cores. New Phytologist . 2008 被引量:1

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部