摘要
牛顿迭代法是求解非线性方程的一种常用方法,该法对初值要求较高,只具有局部收敛性。在牛顿迭代法的基础上,通过调整非线性方程对应曲线切线的斜率,从而保证在取任意初值时,迭代均可收敛,有效改善了牛顿迭代法对初值的苛刻要求。
The Newton iterative,a commonly used method to solve nonlinear equation,has a critical demand for initial values and local astringency.We found that no matter what initial values are selected the constringency of iteration can be achieved through the adjustment of the tangent slope in the corresponding curve of nonlinear equation.Such an adjustment can also change the harsh demand for initial values efficiently.
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2012年第5期1-3,共3页
Journal of Foshan University(Natural Science Edition)
基金
国家自然科学基金资助项目(50978058)
广东省自然科学基金资助项目(S2011010005037)
关键词
牛顿迭代法
非线性方程
初值
斜率
Newton iterative method
nonlinear equation
initial value
slope