期刊文献+

复杂系统演化方程的重正化群解研究

Research on Renormalization Group Solution of Complex Systems Evolutional Equation
原文传递
导出
摘要 很多复杂系统本身具有长大倾向导致微观系统会表现出向宏观发展的趋势.而对于具有多层次多要素的复杂系统来说,重正化群是一种非常好的研究方法,就是对复杂系统演化方程的重正化群解研究.给出了衰减因子、激发因子和综合因子作用下的重正化群变换解,并以中国股票市场为例计算了以演化时间和投资者开户数增长率为自变量的股票市场重正化群函数. There are such a kind of tendency for complex systems to grow up that microsystems try to become to macro-systems. To these multi-hierarchies and hyper-amount elements complex systems, the renormalization group is a good research method. This article focus on the renormalization group solutions to evolutionary equations of complex systems. And the renormalization group solutions based on the fading factor, the factor, and the synthesis factor are discussed. Furthermore, the China stock market is a selected example to above and the renormalization group functions with the independent variables of separately evolution time and the increasing ratio of investors are calculated.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第6期1-11,共11页 Mathematics in Practice and Theory
基金 国家自然科学基金(70671016)
关键词 复杂系统 层次变换 重正化群解 变换因子 complex systems hierarchical transformation renormalization group solution transformation operator
  • 相关文献

参考文献14

  • 1Lai Baoquan, Deng Guishi. Multi-dimensional Dynamic systems analysis theory: An introduction[J]. EMERGENCE, 2002,4(3) : 36-53. 被引量:1
  • 2司马贺[美]著,武夷山译.人工科学:复杂性面面观[M].上海科技教育出版社,ISBN:7-5428-3664-1,2004. 被引量:1
  • 3Nicolaas Virend. An illustration of the essential difference between individual and social learning, and its consequence for computational analysis [J].Journal of Economic Dynamics and Control, 2000,24:1-19. 被引量:1
  • 4Witt U. Evolutionary economics and evolutionary biology[J]. Sociobiology and Economics, Berlin, Heidelberg: Springer, 1999. 279-298. 被引量:1
  • 5William Barnett, Christophe Deissenberg, Gustav Feichtinger (eds). Economic Complexity: Non-Linear Dynamics, Multi-Agent Economics, and Learning[M]. ISETE Volume 14, Elsevier, Amsterdam,2004. 被引量:1
  • 6Igor Evstigneev, Thorsten Hens, Klaus Reiner Schenk-Hoppe. Evolutionary Stable Stock Markets,2003. 被引量:1
  • 7Boris Buchmann, Stefan Weber. A Continuous Time Approximation of Evolutionary Stock Market Model,2005. 被引量:1
  • 8Donald L.Turcotte. Fractals and Chaos in Geology and Geophysics[M]. Cambridge Univ Pr, ISBN: 0521567335;2^nd Edition, 1997. 被引量:1
  • 9Delamotte, Bertrand. A hint of renormalization[J]. American Journal of Physies,2004,72(2):170-184. 被引量:1
  • 10Shirkov D, Kovalev V. The Bogoliubov renormalization group and solution symmetry in mathematical physics[J]. Physics Reports, 2001,352 : 219-249. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部