期刊文献+

一种用于曲线预测的混合神经网络算法研究 被引量:1

A Mixed Neural Network Algorithm for Curve Prediction
下载PDF
导出
摘要 为了克服标准BP神经网络在数据预测中存在的缺陷,提出了一种结合基因表达式编程和BP神经网络算法的混合算法.该算法分为两个阶段,第一阶段,利用GEP独特的编码方式来代替随机设定神经网络结构的选择和初始权阈值的设定;第二阶段,用梯度下降法在已经用基因表达式编程方法确定好的搜索空间中和网络结构中对网络进行进一步的精确训练.将此混合算法用于测井曲线的预测中,同时将结果和基因表达式编程方法、BP神经网络方法进行了比较,证明了该算法可以克服BP神经网络的缺陷,并且优化后的BP神经网络收敛速度快,预测精度高. According to the problem of the standard BP network, a new method of mixed gene expression programming and BP neural network is proposed in this paper. The new method is divided into two stages. In the first stage, the selection of BP network structure, the initial weights and thresholds is carried out by gene exprssion programming. In the second stage, the neural network is accurately trained with gradient descent algorithm based on the searching space and network structure which is determined by gene expression programming. The new algorithm is applied to the prediction of logging curve. Compared the result with gene expression programming and BP neural network, it show that the new algo- rithm can overcome the problems of BP network, speed up the convergence and improve the prediction accuracy.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第4期197-202,共6页 Microelectronics & Computer
基金 地质过程与矿产资源国家重点实验室开放基金项目(GPMR200617)
关键词 BP神经网络 基因表达式编程 预测 梯度下降 BP neural network gene expression programming prediction gradient descent
  • 相关文献

参考文献8

二级参考文献30

  • 1张伟,周群,孙德宝.遗传算法求解最佳证券投资组合[J].数量经济技术经济研究,2001,18(10):114-116. 被引量:9
  • 2惠晓峰,胡运权,李景.人民币/美元汇率短期预测的神经网络模型研究[J].预测,1996,15(6):68-69. 被引量:1
  • 3赵曙光 杨万海.演化硬件研究与应用综述[J].西安电子科技大学学报,2000,27:112-127. 被引量:2
  • 4R Hecht-Nielsen.Theory of the Back-Propagation Neural Network [C].Proc.IEEE.International Conference on Neural Network.1989-1:593-605. 被引量:1
  • 5D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Reading, MA: Addison Wesley, 1989. 被引量:1
  • 6Z. Michalewicz. Genetic algorithms + Data Structures = Evolution Program [Z]. AI Series, Springer Verlag, New York, 1994. 被引量:1
  • 7Liang Wang, John Yen. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter [J]. Fuzzy Sets and systems, 1999, 101: 353-362. 被引量:1
  • 8Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans. Neural Network,1994. 5: 39-53. 被引量:1
  • 9Ilona et al. An investigation into the application of neural networks,fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems [J].Nenrocomputing, 1999, 24: 37-54. 被引量:1
  • 10M. T. Hagan, M. B. Menhaj. Training feedforward networks with the Marquardt algorithm [J]. IEEE Trans. Neural Notworks, 1994, 5:989-993. 被引量:1

共引文献129

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部