期刊文献+

A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection 被引量:30

A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using Bisection
下载PDF
导出
摘要 Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid Chttp://lsec. cc. ac. cn/phg/), a toolbox under active development for parallel adaptive finite element solutions of partial differential equations. The algorithm proposed is characterized by allowing simukaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices. Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given, which is useful in better understanding the behaviour of the biseetioning refinement procedure. Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods.This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection.This algorithm is used in PHG,Parallel Hierarchical Grid (http://lsec.cc.ac.cn/phg/),a toolbox under active development for parallel adaptive finite element solutions of partial differential equations.The algorithm proposed is characterized by allowing simultaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices.Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given,which is useful in better understanding the behaviour of the bisectioning refinement procedure.
作者 Lin-Bo Zhang
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第1期65-89,共25页 高等学校计算数学学报(英文版)
基金 supported by the 973 Program of China 2005CB321702 China NSF 10531080.
关键词 Adaptive refinement BISECTION tetrahedral mesh parallel algorithm MPI. 自适应有限元方法 四面体网格 并行算法 分割 细化 局部网格加密 并行计算机 偏微分方程
  • 相关文献

参考文献11

  • 1J. Bey.Tetrahedral grid refinement[J].Computing.1995(4) 被引量:1
  • 2E.G.Sewell.Automatic generation of triangulation for piecewise polynomial approximation[]..1972 被引量:1
  • 3W.F.Mitchell.Unified multilevel adaptive finite element methods for elliptic problems[]..1988 被引量:1
  • 4W.F.Mitchell.The full domain partition approach to parallel adaptive refinement[].Grid Generation and Adaptive Algorithms.1998 被引量:1
  • 5W.F.Mitchell.The Parallel Hierarchical Adaptive Multi-Level Project. http://math.nist.gov/phaml/ . 被引量:1
  • 6J.G.Castanos,J.E.Savage.Parallel refinement of unstructured meshes[].Proceedings of the IASTED International Conference on Parallel and Distributed Computing and Systems.1999 被引量:1
  • 7A.Plaza,M.C.Rivara.Mesh refinement based on the 8-tetrahedra longest-edge partition[].Proceedingsth International Meshing RoundtableSandia National Laboratories.2003 被引量:1
  • 8M.C.Rivara,D.Pizarro,N.Chrisochoides.Parallel refinement of tetrahedral meshes using terminal-edge bisection algorithm[].Proceedings th International Meshing Roundtable.2004 被引量:1
  • 9P.P.Pébay,D.C.Thompson.Parallel mesh refinement without communication[].Proceedings th International Meshing Roundtable.2004 被引量:1
  • 10S.Balay,K.Buschelman,W.D.Gropp,D.Kaushik,M.G.Knepley,L.C.McInnes,B.F.Smith,H.Zhang. PETSc Web page,http://www.mcs.anl.gov/petsc . 被引量:1

同被引文献83

引证文献30

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部