期刊文献+

Benford's Law and β-Decay Half-Lives

Benford's Law and β-Decay Half-Lives
下载PDF
导出
摘要 The experimental values of 2059 β-decay half-lives are systematically analyzed and investigated. We have found that they are in satisfactory agreement with Benford's law, which states that the frequency of occurrence of each figure, 1-9, as the first significant digit in a surprisingly large number of different data sets follows a logarithmic distribution favoring the smaller ones. Benford's logarithmic distribution of β-deeay half-lives can be explained in terms of Neweomb's justification of Benford's law and empirical exponential law of β-decay half-lives. Moreover, we test the calculated values of 6721 β-decay half-lives with the aid of Benford's law. This indicates that Benford's law is useful for theoretical physicists to test their methods for calculating β-decay half-lives.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第4期713-716,共4页 理论物理通讯(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos. 10675090, 10535010, and 10775068 the National Fund for Forstering Talents of Basic Science under Grant No. J0630316 the 973 State Key Basic Research and Development Program of China under Grant No. 2007CB815004 the CAS Knowledge Innovation Project under Grant No. KJCX2-SW-N02 the Research Fund of Doctoral Points under Grant No. 20070284016
关键词 Benford's law β-decay HALF-LIVES 半衰期 衰变 定律 理论物理学家 对数分布 计算值 法律 实验值
  • 相关文献

参考文献23

  • 1S. Newcomb, Am. J. Math. 4 (1881) 39. 被引量:1
  • 2F. Benford, Proc. Am. Phil. Soc. 78 (1938) 551. 被引量:1
  • 3R.S. Pinkham, Annu. Math. Mon. 76 (1961) 342. 被引量:1
  • 4T. Hill, Proc. Am. Math. Soc. 123 (1995) 887. 被引量:1
  • 5T. Hill, Am. Math. Mon. 102 (1995) 323. 被引量:1
  • 6T. Hill, Stat. Sci. 10 (1995) 354. 被引量:1
  • 7B. Buck, A.C. Merchant, and S.M. Perez, Eur. J. Phys. 14 (1993) 59. 被引量:1
  • 8Xiao-Ping Zhang and Zhong-Zhou Ren, Phys. Rev. C 73 014305 (2006). 被引量:1
  • 9Xiao-Ping Zhang and Zhong-Zhou Ren, J. Phys. G: Nucl. Part. Phys. 34 (2007) 2611. 被引量:1
  • 10G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729 (2003) 3. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部