期刊文献+

基于可辨识矩阵的模糊目标系统决策约简算法 被引量:2

A Decision Reduction Algorithm Based on the Discernibility Matrix in the Fuzzy Object System
原文传递
导出
摘要 在模糊目标信息系统决策约简和可辨识矩阵定义的基础上,讨论了可辨识矩阵的性质以及与决策约简集之间的关系.同时定义一种新的属性重要度,并将此作为启发式信息,设计了一种模糊目标决策信息系统最小决策约简算法,通过实例验证该算法简捷、有效. Based on the definition of the decision reduction and the discernibility matrix in the fuzzy object information system, The property of the discernibility matrix and relation between the discernibility matrix and decision reduction set are discussed. At the same time, A new significance of attribute is defined and taking it as heuristic information, a minimal decision reduction algorithm in the fuzzy object decision information system is designed. The result of the example shows that this algorithm is not only brief, but also effective.
作者 杨成福 舒兰
出处 《数学的实践与认识》 CSCD 北大核心 2009年第5期103-107,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(10671030) 电子科技大学中青年学术带头人培养计划(Y02018023601033)
关键词 模糊目标信息系统 可辨识矩阵 决策约简 算法 fuzzy object information system discernibility matrix decision reduction algorithm
  • 相关文献

参考文献10

二级参考文献64

  • 1王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001.. 被引量:1
  • 2[2]Jianwei Han, M Kamber. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers, 2000 被引量:1
  • 3[3]J Grabmeier, A Rudolph. Techniques of cluster algorithms in data mining. Data Mining and Knowledge Discovery, 2002, 6(4): 303~360 被引量:1
  • 4[4]A K Jain, M N Murty, P J Flynn. Data clustering: A review. ACM Computing Surveys, 1999, 31(3): 264~323 被引量:1
  • 5[5]J MacQueen. Some methods for classification and analysis of multivariate observations. In: L M Le Cam, J Neyman eds. Proc of the 5th Berkeley Symp on Mathematics, Statics and Probability, Vol 1. Berkeley: Berkeley University of California Press, 1967. 281~298 被引量:1
  • 6[6]J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981 被引量:1
  • 7[7]L Kaufman, P J Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990 被引量:1
  • 8[8]M Ester, H P Kriegel, J Sander et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: E Simoudis, J Han, U Fayyad eds. Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining (KDD-96). Menlo Park: AAAI Press, 1996, 226~231 被引量:1
  • 9[9]M Ankerst, M Breuning, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: A Delis, C Faloutsos, S Ghandeharizadeh eds. Proc of the 1999 ACM SIGMOD Int'l Conf on Management of Data. New York: ACM Press, 1999. 49~60 被引量:1
  • 10[10]W Wang, J Wang, R Muntz. STING: A statistical information grid approach to spatial data mining. In: M Jarke, M J Carey, K R Dittrich et al eds. Proc of the 23rd IEEE Int'l Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1997, 186~195 被引量:1

共引文献715

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部