期刊文献+

基于MODIS影像估测太湖蓝藻暴发期藻蓝素含量 被引量:27

Quantitative estimation of phycocyanin concentration using MODIS imagery during the period of cyanobacterial blooming in Taihu Lake
下载PDF
导出
摘要 利用太湖水体藻蓝素的实测数据,基于蓝藻的光谱特征分析,选择MODIS250m分辨率的卫星遥感影像,建立了藻蓝素估测模型.研究表明,该模型可以较为准确地识别新生蓝藻水华,辅助提取新生蓝藻水华的覆盖区.在新生蓝藻水华的覆盖区内,藻蓝素的定测估算已经失去实际意义,没有必要讨论估测的精度高低.在新生蓝藻水华的覆盖区外,藻蓝素的遥感估测精度取决于藻蓝素浓度的高低以及藻蓝素与叶绿素的定量关系,即当藻蓝素浓度<35μg/L时,模型的平均相对估测误差约为134%;藻蓝素浓度>35μg/L时,平均相对估测误差降至31%;但对于那些藻蓝素的浓度>35μg/L,且藻蓝素浓度与叶绿素a浓度的比值<8的湖区而言,藻蓝素浓度模型的相对估测误差约为29%. On the basis of the spectral characteristics of cynobacteria, a robust semi-empirical model was developed to estimate phycocyanin concentration (Cpc) using MODIS imagery with a spatial resolution of 250m. The floating neonatal cyanobacteria could be identified well and truly by the estimation model of Cpc. So it was easy to retrieve the coverage of floating neonatal cyanobacteria from MODIS imagery by the model, where there was not any actual meaning to quantitatively estimate Cpc and it was certainly not necessary to pay attention to its estimation precision. In the outside of the newly cyanobacterial blooms-covered area, the Cpc estimation precision was highly determined by phycocyanin pigment content and the ratio of Cpc to chlorophyll-a concentration (Chl-a). When Cpc was less than 35μg/L, the relative estimation error of the model was about 134% on average; and when it was more than 35μg/L, the relative error was reduced to 31%. However, when Cpc was more than 35μg/L and the ratio of Cpc to Chl-a was less than 8, the relative error was only up to 29% on average.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2009年第3期254-260,共7页 China Environmental Science
基金 国家自然科学基金资助项目(40871168,40671138) 浙江省自然科学基金项目(Z507024)
关键词 蓝藻 藻蓝素 MODIS 遥感 太湖 cyanobacteria phycocyanin MODIS remote sensing: TaihuLake
  • 相关文献

参考文献19

  • 1黄漪平主编..太湖水环境及其污染控制[M].北京:科学出版社,2001:298.
  • 2孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595. 被引量:628
  • 3Dekker A G. Imaging spectrometry of water [C]//Meer F D, Jong S M. Imaging spectrometry: basic principles and prospective applications. Dordrecht: Kluwer Academic, 2001:307-359. 被引量:1
  • 4Kutser T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing [J]. Limnology and Ocengraphy, 2004,49(6):2179 2189. 被引量:1
  • 5马荣华,孔繁翔,段洪涛,张寿选,孔维娟,郝景燕.基于卫星遥感的太湖蓝藻水华时空分布规律认识[J].湖泊科学,2008,20(6):687-694. 被引量:100
  • 6Vincent R K, Qin X, McKay R M L, et al. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie [J]. Remote Sensing of Environment, 2004,89:381-392. 被引量:1
  • 7Kutser T, Metsamaa L, Vahtmae E, et al. Suitability of MODIS 250 m resolution band data for quantitative mapping of cyanobacterial blooms [J]. Proceedings of the Estonian Academy of Sciences Biology Ecology, 2006,55:318-328. 被引量:1
  • 8Reinart A, Katser T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea [J]. Remote Sensing of Environment, 2006,102:74-85. 被引量:1
  • 9Simis S G H, Peters S W M, Gons H J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water [J]. Limnology and Oceanography, 2005,50:237-245. 被引量:1
  • 10Dekker A G, Malthus T J, Goddijn L M. Monitoring cyanobacteria in eutrophic waters using airborne imaging spectroscopy and multispectral remote sensing systems [C]// Committee of Australasian Remote Sensing Conference. Proceedings of 6th Australasian remote sensing conference. Wellington, New Zealand: [s.n.], 1992:204-214. 被引量:1

二级参考文献71

共引文献898

同被引文献375

引证文献27

二级引证文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部