摘要
用g(G)和δ(G)分别表示一个图G的围长和顶点最小度.ξ(G)为图G的Betii亏数,主要证明了以下2个结果1)设G为k-边连通简单图,若对G中任意圈C,存在点x∈C满足dG(x)〉|V(G)|/(k-1)^2+2+k-g(G)+2,k=1,2,3,则G是上可嵌入的.且不等式的下界是最好的;2)设G为k-边连通简单图,则ξ(G)≤{max{1,m},k=1 max{1,1/k-1m-1},k=2,3其中m=|V(G)|g(G)-6/g(G)^2+(δ(G)-2)g(G)-4,且不等式的上界是可达的.进而得到了最大亏格一个比较好的下界.
Let G be a graph. Denote by g(G) the girth of G, and by δ(G) the minimum degree of G. The following two results are proved:
1) Let G be a k-edge-connected simple graph, for any cycle C, there exist a vetex x ∈ C satisfying the condition:
dG(x)〉|V(G)|/(k-1)^2+2+k-g(G)+2,k=1,2,3,
then G is upper embeddable, and the lower bound is best possible. 2) Let G be a k-edge-connected simple graph, then
ξ(G)≤{max{1,m},k=1
max{1,1/k-1m-1},k=2,3, where m=|V(G)|g(G)-6/g(G)^2+(δ(G)-2)g(G)-4,
Moreover, the upper bound is best possible, and a better lower bound of the maximum genus is given.
出处
《系统科学与数学》
CSCD
北大核心
2009年第3期353-359,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10771062)
教育部"新世纪优秀人才支持计划"(NCET-07-0276)资助项目.
关键词
图
BETTI亏数
上可嵌入性
圈
Graph, Betti deficiency number, upper embeddability, cycle