期刊文献+

三维扩散方程基于Richardson外推法的高阶紧致差分方法

High-Order Compact Difference Method Based on Richardson Extrapolation for Three-Dimensional Diffusion Equations
下载PDF
导出
摘要 基于Richardson外推法提出了一种求解三维扩散方程的高阶紧致差分方法.该方法首先利用截断误差为O(2τ+h4)的四阶紧致交替方向隐式(ADI)差分格式在不同尺寸的网格上对原方程进行求解,然后利用Richard-son外推技术外推一次,得到了三维扩散方程具有O(4τ+h6)精度的数值解.数值实验验证了该方法的高阶精度及有效性. A high-order compact difference method based on the Richardson extrapolation technique is proposed to solve the unsteady three dimensional diffusion equations. For a particular implementation, firstly, numerical results are obtained on meshes of different sizes using a high order alternating direction implicit (ADD difference scheme, which are fourth order in space and second order in time. Then, the Richardson extrapolation method is used to get an accuracy solution for three-dimensional problems, which is six order in space and fourth order in time. Numerical experiments are made to demonstrate the high accuracy and validity of this method.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期22-24,共3页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10502026,10662006)
关键词 三维扩散方程 高阶紧致格式 交替方向隐式方法 RICHARDSON外推法 three-dimensional diffusion equation high-order compact scheme ADI method Richardson extrapolation method
  • 相关文献

参考文献3

二级参考文献20

  • 1葛永斌,吴文权,卢曦.解二维扩散方程的高精度多重网格方法[J].工程热物理学报,2002,23(S1):121-124. 被引量:6
  • 2哈克布思W 林群(译).多重网格方法[M].北京:科学出版社,1988.. 被引量:6
  • 3Peaceman D W, Rachford H H. The numerical solution of parabolic and elliptic differential equations[J]. J Soc Indnst Appl Math, 1955 ; 3 : 28 - 41. 被引量:1
  • 4Brandt A. Mu]ti-Level adaptive solution to boundary-value problems[J]. Math Comput, 1977 ;31:333- 390. 被引量:1
  • 5Gupta M M et al . Comparison of second-and fourth-order discretizations for multigrid poisson solvers[J]. J Comput Phys, 1997 ; 132 : 226 - 232. 被引量:1
  • 6Zhang J. Fast and high accuracy multlgrid solution of the three dimensional poisson equation[J]. J Comput Phys,1998; 143 :449 - 461. 被引量:1
  • 7Hirsh R S. Higher order accurate difference solutions of fluid mechanics problem by a compact differencing technique[J]. J Comput Phys, 1975 ; 19:90 - 109. 被引量:1
  • 8Wesseling P W. An introduction to multigrid methods[ M]. Pure and Appl Math, Chichester: Wiley, 1992. 被引量:1
  • 9胡健伟 汤怀民.微分方程数值方法[M].北京:科学出版社,2000.. 被引量:7
  • 10PEACEMAN D W, RACHFORD H H. The numerical solution of parabolic and elliptic differential equations[J]. J Soc Indust Appl Math, 1955, 3: 28-41. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部