期刊文献+

基于聚类的快速支持向量机训练算法 被引量:1

Fast training support vector machine based on clustering
下载PDF
导出
摘要 支持向量机(support vectormachine,SVM)具有良好的泛化性能而被广泛应用于机器学习及模式识别领域。然而,当训练集较大时,训练SVM需要极大的时间及空间开销。另一方面,SVM训练所得的判定函数取决于支持向量,使用支持向量集取代训练样本集进行学习,可以在不影响结果分类器分类精度的同时缩短训练时间。采用混合方法来削减训练数据集,实现潜在支持向量的选择,从而降低SVM训练所需的时间及空间复杂度。实验结果表明,该算法在极大提高SVM训练速度的同时,基本维持了原始分类器的泛化性能。 SVM is a well-known method used for pattern recognition and machine learning. However, training a SVM is very costly in terms of time and memory consumption when the data set is large. In contrast, the SVM decision function is fully determined by a small subset of the training data, called support vectors. Therefore, removing any training samples that are not relevant to support vectors might have no effect on building the proper decision function. This paper proposed a hybrid method to remove from the training set the data that was irrelevant to the final decision function, and thus the number of vectors for SVM training became small and the training time could be decreased greatly. Experimental results show that a significant a- mount of training time can be reduced by the method without compromising the generalization capability of SVM.
出处 《计算机应用研究》 CSCD 北大核心 2009年第4期1253-1256,共4页 Application Research of Computers
基金 国家“973”计划重点基础研究发展资助项目(2003CB317000) 厦门理工学院引进人才项目(YKJ08003R)
关键词 二次规划 无监督聚类 权值 距离阈值 潜在支持向量 quadratic programming(QP) unsupervised clustering weight distance threshold potential support vector
  • 相关文献

参考文献10

  • 1VAPNIK V. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 1995. 被引量:1
  • 2BALCAZAR J L, DAI Y, WATANABE O. Provably fast training algorithms for support vector machines[ C]//Proc of the 1st IEEE International Conference on Data Mining ( ICDM'OI ). [ S. l. ] : IEEE Computer Society, 2001 : 43-50. 被引量:1
  • 3AGARWAL D K. Shrinkage estimator generalizations of proximal support vector machines[ C]//Proc of the 8th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining (SIGKDD'02). Edmonton, Canada: [ s. n. ], 2002: 173-182. 被引量:1
  • 4VALENTINI G, DIETTERICH T G. Low bias bagged support vector machines [ C ]//Proc of the 20th International Conference on Machine Learning ( ICML'03 ). Washington DC : [ s. n. ] , 2003 : 752- 759. 被引量:1
  • 5SHIH L, RENNIE J D M, CHANG Y H, et al. Text bundling:statistics-based data reduction [ C ]//Proc of the 20th International Conference on Machine Learning ( ICML'03 ). Washington DC : [ s. n. ], 2003, 377- 387. 被引量:1
  • 6DANIAEL B, CAO D. Training support vector machines using adaptive clustering[ C]//Proc of SIAM International Conference on Data Mining (SIAM' 04) . Lake Buena Vista, FL:[s. n. ], 2004: 126- 136. 被引量:1
  • 7李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108
  • 8YU H, YANG Jiong, HAN Jia-wei. Classifying large data sets using SVM with hierarchical clusters[ C ]//Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD'02) . New York: ACM Press,2002: 306-315. 被引量:1
  • 9CHANG C C, LIN C J. LIBSVM: a library for support vector machines [ EB/OL]. http ://www. csie. ntu. edu. tw/cjlin/libsvm. 被引量:1
  • 10MURPHY P M, AHA D W. UCI repository of machine learning databases [ EB/OL]. (1994). http://www. ics. uci. edu/- mleam/ML- Repository. html. 被引量:1

二级参考文献1

共引文献107

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部