期刊文献+

基于个性化学习的CAI课件系统 被引量:2

Personalized Study-Based CAI Courseware System
下载PDF
导出
摘要 为了提高计算机辅助教学(CAI:Computer Assisted Instruct)课件的质量和教学效果,通过传统的普通CAI课件与基于网络化的CAI课件的对比,分析了网络化的计算机辅助教学的优势和存在的问题。针对存在的问题,基于数据挖掘理论提出了层次生成算法,并将该算法应用于CAI课件系统中,构建课件树,合理组织课件,为学生提供个性化的课件服务。针对该算法中对学生的忽略,利用Hamming距离、按照学生对不同种类的课件使用的频率等信息对学生进行分组,较大地改善了个性化课件系统的效率。 To improve the quality and effect of CAI (Computer Assisted Instruct) courseware system, compared with the traditional CAI courseware system, the network-based CAI courseware system has its advantages and disadvantages. A hierarchical level-generate algorithm is proposed, based on the data mining theory, to cope with its disadvantages by building a CAI courseware tree and organizing the whole eourseware objects into a reasonable structure. By doing this, the system can provide the student with personalized service. But this algorithm overlooked the students. Thus, mining on students were considered. Using Hamming distance theory, students were clustered into different groups based on the courseware they accessed. The performance is greatly improved.
出处 《吉林大学学报(信息科学版)》 CAS 2009年第2期195-200,共6页 Journal of Jilin University(Information Science Edition)
基金 高教部新世纪高等教育教学改革工程基金资助项目(高教研2000B71)
关键词 CAI课件 个性化学习 层次生成算法 HAMMING距离 CAI courseware personalized study hierarchical level-generate algorithm Hamming distance
  • 相关文献

参考文献10

  • 1贺令亚,王小玲.CAI课件存在的不足及改进策略[J].现代计算机,2007,13(2):86-87. 被引量:1
  • 2屈力刚,武大伟,苏长春,刘迎春.基于网络的CAI课件开发设计[J].沈阳航空工业学院学报,2004,21(3):49-51. 被引量:2
  • 3KELEBERDA IGOR, LESNA NATALYA, MAKOVETSKIY SERGIY, et al. Personalized Distance Learning Based on Multi- Agent Ontological System [ C ] //IEEE International Conference on Advanced Learning Technologies, ICALT 2004. Washington D C, USA: IEEE Computer Society, 2004: 777-779. 被引量:1
  • 4ROMERO C, VENTURA S. Educational Data Mining: A Survey From 1995 to 2005 [ J]. Expert Systems with Applications, 2007, 33 (1) : 135-146. 被引量:1
  • 5ROMERO C, VENTURA S, DELGADO J A, et al. Personalized Links Recommendation Based on Data Mining [ C ] //In Adaptive Educational Hypermedia Systems, Proc Second European Conf Technology Enhanced Learning ( EC-TEL 07). Berlin : Springer-Verlag, 2007 : 292-306. 被引量:1
  • 6MARASCU A, MASSEGLIA F. Mining Sequential Patterns from Data Streams: A Centroid Approach [ J ]. Journal of Intelligent Information Systems, 2006, 27 (3) : 291-307. 被引量:1
  • 7宋擒豹,沈钧毅.Web日志的高效多能挖掘算法[J].计算机研究与发展,2001,38(3):328-333. 被引量:115
  • 8TANG C, LAU R W H, LI Qing, et al. Personalized Courseware Construction Based on Web Data Mining [ C ]//Proc of WISE Conference. Hong Kong: IEEE, 2000: 204-211. 被引量:1
  • 9张斌武,王勤.Hamming距离下树型网络的最短路改进问题[J].兰州理工大学学报,2008,34(2):84-86. 被引量:3
  • 10TANG T, MCCALLA G. Smart Recommendation for an Evolving E-Learning System: Architecture and Experiment [ J ]. International Journal on E-Learning, 2005, 4 ( 1 ): 105-129. 被引量:1

二级参考文献17

共引文献117

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部