摘要
讨论刚性松弛方程组初边值问题的松弛逼近解L1-收敛到其平衡态解的收敛率.在边界值为一个非超音速状态,初始值在此非超音速状态的小扰动的条件下,当平衡态解为具有有限条间断的分片光滑函数时,使用匹配行波解的方法导出松弛方程组的初边值问题的松弛解L1-收敛到其平衡态解的误差界为O(εlnε+ε).
L^1-convergence rate of solutions to a stiff relaxation system with initial-boundary value condition to its equilibrium solutions is studied. Assume that the boundary data is a nontransonic state and initial data is a small perturbation, by using matching method and the traveling wave solutions, the error between the relaxation approximations and its equilibrium solution is estimated to be bounded by O(ε|lnε|+ε) in L^1-norm, if the equilibrium solutions are piecewise smooth with finitely many discontinui- ties for the initial-boundary value problem of the stiff relaxation system.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
北大核心
2009年第1期61-67,共7页
Journal of Jinan University(Natural Science & Medicine Edition)
基金
国家自然科学基金资助项目(10571075)
广东省自然科学基金资助项目(04010473)
关键词
初边值问题
守恒律
松弛逼近解
平衡态解
收敛率
initial-boundary value problem
conservation laws
relaxation approximations
equilibrium solution
convergence rate