期刊文献+

提高MOEAs解集的分布性——一种基于∞范数的逐步方法 被引量:1

Increase diversity of solutions of MOEAs——∞-norm based stepwise method
下载PDF
导出
摘要 解集的分布性是多目标优化中最重要的研究工作之一,解集的分布性主要体现在两个方面,一是解集的分布广度;二是解集的均匀性。在多目标进化算法(MOEAs)中,解集分布性的保持放在种群维护中实现,提出一种基于∞范数的逐步方法(INS)来提高MOEAs解集的分布性,INS用∞范数来衡量个体的分布性,用逐步的方法来裁剪个体。通过与目前最流行的两个MOEAs——NSGA-II和ε-MOEA,在9个测试函数上进行实验,结果表明INS能很好地提高解集的分布性。 Diversity of solutions is one of the most important jobs of multi-objective optimization.Diversity includes the span and uniformity.In Multi-Objective Evolutionary Algorithms(MOEAs),population maintenance is used to realize the diversity.In this paper,a ∞-norm(infinite norm) based stepwise(INS) method is proposed to increase diversity of MOEAs.INS use ∞-norm as a measurement of diversity of individuals,and use stepwise method to wipe off individuals form population.Through experiments on 9 test problems,compared with two most popular MOEAs——NSGA-Ⅱ and ε-MOEA,the experimental results demonstrate that INS can increase diversity of solutions obviously.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第10期49-53,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60773047 湖南省教育厅重点科研项目(No.06A074) 湘潭大学校级科研项目(No.06XZX06)~~
关键词 多目标进化算法 种群维护 分布性 ∞范数 逐步 multi-objective evolutionary algorithms population maintenance diversity ∞-norm stepwise
  • 相关文献

参考文献18

  • 1Deb K,Goldberg D E.An investigation of niche and species formation in genetic junction optimization[C]//Schaffer J D.Proceedings of the Third International Conference on Genetic Algorithms.San Mateo, California, George Mason University:Morgan Kaufmann Publishers, 19g9 : 42-50. 被引量:1
  • 2Deb K,Pratap A,Agarwal S,et al.A fast and elitist muhiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002,6(2 ) : 182-197. 被引量:1
  • 3Deb K,Mohan M,Mishra S.A fast muhi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions,2003002[R]. KanGAL, 2003. 被引量:1
  • 4Zitzler E,Thiele L.Multiobjective evolutionary algorithms:a comparative ease study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation, 1999,3(4):257-271. 被引量:1
  • 5Zitzler E, Laumanns M,Thiele L.SPEA2: Improving the strength Pareto evolutionary algorithm, 103[R].Computer Engineering and Networks Laboratory(TIK),ETH Zurich,Zurich,Switzerland,2001. 被引量:1
  • 6Knowles J,Come D.Properties of an adaptive archiving algorithm for storing nondominated vectors[J].IEEE Transactions on Evolutionary Computation, 2003 : 7 (2) : 100-116. 被引量:1
  • 7Come D W,Knowles J D,Oates M J.PESA-II:Region-based selection in evolutionary muhiobjective optimization[C]//Spector L.Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001) ,San Francisco,California,2001:283-290. 被引量:1
  • 8郑金华著..多目标进化算法及其应用[M].北京:科学出版社,2007:276.
  • 9Villalobos-Arias M,Coello Coello C A.Asymptotic convergence of metaheuristics for multiobjective optimization problems[J].Soft Computing, 2006,10( 11 ) : 1001-1005. 被引量:1
  • 10Peter A N.The balance between proximity and diversity in multiobjective evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation,2003,7(2): 174-158. 被引量:1

同被引文献15

  • 1Deb K, Pratap A, Agarwal S, et al.A fast elitist multi-objective genetic algorithm: NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2) : 182-197. 被引量:1
  • 2Zitzler E, Laumanns M, Thiele L.SPEA2: Improving the strength Pareto evolutionary algorithm[R].Computer Engineering and Networks Laboratory,ETH Zurich,Zurich,Switzerland,2001. 被引量:1
  • 3Knowles J, Come D.Properties of an adaptive archiving algorithm for storing nondominated vectors[J].IEEE Transactions onEvolutionary Computation,2003,7: 100-116. 被引量:1
  • 4Murata T,Ishibuchi H,Gen M.Specification of genetic search direction in cellular multi-objective genetic algorithms[C]//Lecture Notes in Computer Science:Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization(EMO 2001 ), 2001 : 82-95. 被引量:1
  • 5Jin Y, Okabe T, Sendhoff B.Adaptive weighted aggregation for multiobjective evolution strategies[C]//Lecture Notes in Computer Science: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization(EMO 2001 ), 2001 : 96-110. 被引量:1
  • 6Sato H,Aguirre H,Tanaka K.Local dominance and local recombination in MOEAs on 0/1 multi objective knapsack problems[J]. European Journal of Operational Research,2007,181 : 1708-1723. 被引量:1
  • 7Sato H,Aguirre H, Tanaka K.Controlling dominance area of solutions and its impact on the performance of MOEAs[R].LNCS 4403 : EMO 2007,2007: 5-20. 被引量:1
  • 8Deb K.Multi-Objective genetic algorithms: Problem difficulties and construction of test problems[J].Evolutionary Computation, 1999,7(3) :205-230. 被引量:1
  • 9Zitzler E,Deb K,Thiele L.Comparison of multi-objective evolutionary algorithms: Empirical results[J].Evolutionary Computation,2000,8(2) : 173-195. 被引量:1
  • 10Deb K, Thiele L, Laumanns M, et al.Scalable multi-objective optimization test problems[C]//Proc of the IEEE Congress on Evolutionary Computation, 2002: 825-830. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部