摘要
解集的分布性是多目标优化中最重要的研究工作之一,解集的分布性主要体现在两个方面,一是解集的分布广度;二是解集的均匀性。在多目标进化算法(MOEAs)中,解集分布性的保持放在种群维护中实现,提出一种基于∞范数的逐步方法(INS)来提高MOEAs解集的分布性,INS用∞范数来衡量个体的分布性,用逐步的方法来裁剪个体。通过与目前最流行的两个MOEAs——NSGA-II和ε-MOEA,在9个测试函数上进行实验,结果表明INS能很好地提高解集的分布性。
Diversity of solutions is one of the most important jobs of multi-objective optimization.Diversity includes the span and uniformity.In Multi-Objective Evolutionary Algorithms(MOEAs),population maintenance is used to realize the diversity.In this paper,a ∞-norm(infinite norm) based stepwise(INS) method is proposed to increase diversity of MOEAs.INS use ∞-norm as a measurement of diversity of individuals,and use stepwise method to wipe off individuals form population.Through experiments on 9 test problems,compared with two most popular MOEAs——NSGA-Ⅱ and ε-MOEA,the experimental results demonstrate that INS can increase diversity of solutions obviously.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第10期49-53,共5页
Computer Engineering and Applications
基金
国家自然科学基金No.60773047
湖南省教育厅重点科研项目(No.06A074)
湘潭大学校级科研项目(No.06XZX06)~~
关键词
多目标进化算法
种群维护
分布性
∞范数
逐步
multi-objective evolutionary algorithms population maintenance diversity ∞-norm stepwise