期刊文献+

最大下沉角计算的神经网络模型研究 被引量:3

Determining angle of maximum subsidence based on neural network
下载PDF
导出
摘要 最大下沉角是确定地表移动盆地走向主断面位置的关键性参数,关系到地表移动和变形预计的精度。系统分析了影响最大下沉角的地质采矿因素,根据国内大量的地表移动观测资料,建立了最大下沉角计算的神经网络模型。该模型与遗传算法相结合,克服了单一神经网络易陷入局部最优和收敛速度慢等缺点。研究表明,用基于遗传算法的神经网络来计算地表移动盆地的最大下沉角,其结果更加真实、可靠。 Angle of maximum subsidence, which is important to determine the position of the major cross-section of subsidence basin along strike, affects the prediction precision of the surface displacement and strain. The geological and mining factors that influence the angle of maximum subsidence are systematically analyzed; Based on the practical observational data from the ground movement monitoring stations of many mines in China the neural network model is developed to determine the angle of maximum subsidence. The combination of genetic algorithm and neural network can overcome the disadvantages of the artificial neural works such as limitation of local optimization and slow convergence rate. The validity and reliability of neural network method combined with genetic algorithm to determinate the angle of maximum subsidence are verified by the existing engineering instances.
出处 《煤炭科技》 2009年第1期7-10,共4页 Coal Science & Technology Magazine
基金 国家自然科学基金项目(40672177) 河南省教育厅科技攻关项目(2007440005)
关键词 最大下沉角 遗传算法 神经网络 开采沉陷 angle of maximum subsidence genetic algorithm neural network mining subsidence
  • 相关文献

参考文献9

二级参考文献45

  • 1许延春,耿德庸,梁京华,梁怀青,曹荣平,赵翩.分段划分巨厚松散层移动角参数的方法[J].煤炭学报,1996,21(4):383-387. 被引量:19
  • 2何国清.矿山开采沉陷学[M].江苏:中国矿业大学出版社,1994.6. 被引量:23
  • 3冯夏庭 朱维申.智能岩石力学在地下工程中的应用[J].岩石力学与工程学报,1999,18:822-825. 被引量:5
  • 4冯夏庭 王泳嘉.采矿智能系统--人工智能与神经网在矿业工程中的应用[M].北京:冶金工业出版社,1994.. 被引量:2
  • 5克拉茨H 马伟民 王金庄 王绍林译.采动损害与防护[M].北京:煤炭工业出版社,1984.. 被引量:1
  • 6阿维尔申.煤矿地下开采时的岩层移动[M].北京:煤炭工业出版社,1995.. 被引量:2
  • 7[1]YI Pin-kuo, LI Tzun-hseng. GA-based fuzzy PI/PD controller for automotive active suspension system [J]. IEEE Trans on Industrial Electroics,1999,46(6):1051-1056. 被引量:1
  • 8[2]LI Yun, NG K C, MURRAY-SMITH DJ. Genetic algorithm automated approach to design of sliding mode control system [J]. Int J Control, 1996,63(4):721-739. 被引量:1
  • 9[3]CHEN T T, LI T H S. Integrated fuzzy GA-based simplex sliding-mode control [J]. Int J of Fuzzy Systems, 2000,2(4):267-277. 被引量:1
  • 10[4]QKYAY K, KEMALETTIN E, MELIKSAH E. The fusion of computationally intelligent methodologies and sliding-mode control-a survey [J]. IEEE Trans on Industrial Electroics,2001,48(1):4-17. 被引量:1

共引文献303

同被引文献43

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部