期刊文献+

基于免疫原理的网络入侵检测模型研究 被引量:2

Research on Network-based Intrusion Detection Inspired by Immunology
下载PDF
导出
摘要 当前的网络入侵检测技术存在误报率、漏报率高,资源负载重,自适应性、智能化程度低,可扩展性差等问题,针对这些问题,本文提出了一种基于免疫原理的网络入侵检测模型,具有检测率高、资源负载轻、高自适应、高智能化、可扩展、可调节、高鲁棒性等优点,通过仿真实验验证了该模型中所采用算法和机制的有效性。 Some problems such as high false positive rate and false negative rate, heavyweight, low adaptability and automatism and poor scalability, exists in current network-based intrusion detection technologies. To solve them, this paper presents an immo-inspired network-based intrusion detection model which is with high detection rate, lightweight, adaptive, self-learning, scalable, adjustable, robust. Algorithms and mechanisms used in the model are justified as effective by experimental results.
出处 《微计算机信息》 2009年第9期53-55,共3页 Control & Automation
关键词 入侵检测 免疫 否定选择 克隆选择 Intrusion Detection Immunity Negative Selection Clonal Selection
  • 相关文献

参考文献8

  • 1李涛..计算机免疫学[M],2004.
  • 2P. Matzinger. An innate sense of danger. Seminars in Immunology, 10:399-415, 1998. 被引量:1
  • 3S. Forrest, A,S. Perelson, L. Allen, R. and Cherukuri. Self-Nonself Discrimination in a Computer. In Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA: IEEE Computer Society Press (1994). 被引量:1
  • 4L. N. de Castro and F. J. V. Zuben. The clone selection algorithm with engineering applications. In Proceedings of GECCO'00, Workshop on Artificial Immune Systems and Their Applications, pp. 36-37. 2000. 被引量:1
  • 5Kim, J. and Bentley, P. (1999b). The Artificial Immune Model for Network Intrusion Detection. 7th European Conference on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen, Germany. 被引量:1
  • 6S. Hofmeyr and S. Forrest. Architecture for an Artificial Immune System. Evolutionary Computation 7 (1), Morgan-Kaufmann, San Francisco, CA, pp. 1289-1296 (2000). 被引量:1
  • 7杨赞国,程全洲.基于免疫的防火墙系统安全技术研究[J].微计算机信息,2005,21(09X):16-18. 被引量:7
  • 8http://esa.ackleyshack.com/ndb/ 被引量:1

二级参考文献3

共引文献6

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部