期刊文献+

粒计算在基因微阵列数据特征选择中的应用

Application of Granular Computing in Microarray Gene Expression Data
下载PDF
导出
摘要 对于许多模式识别问题来说,特征选择是一个非常重要的数据预处理技术,这对于维数高,而样本又相对较小的微阵列数据来说更是如此。提出一种将粒计算与传统的SVM-RFE算法相结合的特征选择算法。这种算法能够有效地去除大部分与分类无关的基因;并且能够搜索到基因数量相对较少而分类能力相对较强的信息基因子集。 Feature selection is an important preprocessing technique for many pattern recognition problems. When the number of features is very large while the number of samples is relatively small as in the microarray data analysis, feature selection is even more important. A feature selection algorithm based on a granular computing and SVM-RFE hybrid algorithm can effectively eliminate most of the irrelevant genes, and can find a more informative gene subset in which the number of informative genes is almost least but its classification performance is almost highest.
出处 《科学技术与工程》 2009年第6期1424-1427,1455,共5页 Science Technology and Engineering
基金 国家自然科学基金(60773172)资助
关键词 微阵列基因表达数据 特征选择 粒计算 SVM-RFE算法 microarray data set feature selection granular computing SVM-RFE algorithm
  • 相关文献

参考文献7

  • 1Shapiro G P,Tamayo P.Microarray datamining:facing the challenges.SIGKDD Explorations,2003;5(2):1-5 被引量:1
  • 2Model F,Adorjan P,Olek A,et al.Feature selection for DNA methylation based cancerclassification.Bioinformatics,2001;17(1):157-164 被引量:1
  • 3Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification usingsupport vector machines.Machine Learning,2002;46:389-422 被引量:1
  • 4Duan K,Rajapakse J C.A variant of SVM-RFE for gene selection in cancer classificationwith expression data.Proc IEEE Symp Computational Intelligence in Bioinformatics andComputational Biology,2004:49-55 被引量:1
  • 5刘清著..Rough集及Rough推理[M].北京:科学出版社,2001:242.
  • 6Shao Jian.Information granularity computing based on rough sets.Institute ofAutomatics,Chinese Academy of Sciences,Beijing,2000 被引量:1
  • 7李瑶主编..基因芯片数据分析与处理[M].北京:化学工业出版社,2006:318.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部