期刊文献+

城域网应用层流量预测模型 被引量:8

Traffic Prediction Models of Traffics at Application Layer in Metro Area Network
下载PDF
导出
摘要 Internet流量是具有复杂非线性组合特征的季节性时间序列.目前国内外的网络流量预测研究主要集中在网络层和传输层,仅采用单一的ARMA(n,n-1)模型来描述网络的整体流量趋势,但该模型无法描述应用层流量的季节特性.因此提出基于应用层的流量预测分析模型,对国内某城域网出口链路上的应用层流量序列采用ARIMA季节乘积混合模型(p,d,q)(P,D,Q)s建模并预测.实验结果表明,在同一个城域网中不同的应用层流量表现出不同的行为特征,经ARIMA季节乘积混合模型(p,d,q)(P,D,Q)s预测的应用层流量趋势与实际曲线基本相似,平均绝对百分比误差在10%左右. Complexity and diversity of Internet traffic are constantly growing. Networking researchers become aware of the need to constantly monitor and reevaluate their assumptions in order to ensure that the conceptual models correctly represent reality. Internet traffic today is a complex nonlinear combination of the seasonal time series. The current network traffic measurement research is mainly concentrated on the flow forecasts and analysis based on network layer or transport layer. However, a single ARMA (n, n-1) model is used, which can only describe the overall network traffic trends, while different traffics based on the application layer aren't always consistent with ARMA (n, n-1) model. Presented in this paper are traffic prediction models based on application layer, which use ARIMA seasonal multiple model (p, d, q)(P, D, Q)s for modeling and forecasting the seasonal time series from China's exports of a metro area network link. Experimental results show that different application layer traffics perform different traffic behavior characteristics, and with the establishment of different application-layer flow prediction models, forecasting trends are very similar with the actual flow curves, and mean absolute percentage errors are around 10%. The authors firstly presents ARIMA seasonal multiple model as traffic prediction models based on application layer.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第3期434-442,共9页 Journal of Computer Research and Development
基金 国家“九七三”重点基础研究发展计划基金项目(2007CB310702) 国家自然科学基金网络与信息安全重大专项基金项目(90604015) 中国科学院重大科研装备研制项目(YZ200824)~~
关键词 城域网 应用层流量 时间序列 ARIMA季节乘积混合模型 流量预测 metro area network application layer traffic time series ARIMA seasonal multiplemodel flow forecasting
  • 相关文献

参考文献20

  • 1Nevil Brownlee, Claffy Kc. Internet Measurement [C]//Proc of IEEE Internet Computer. Piseataway, NJ: IEEE, 2004: 30-33 被引量:1
  • 2Xie Gaogang, Zhang Guangxing, Yang Jianhua, et al. The survey on traffic of metro area network with measurement on-line [C]//Proe of the 20th Int Teletraffie Congress. Berlin: Springer, 2007:666-677 被引量:1
  • 3张宏莉,方滨兴,胡铭曾,姜誉,詹春艳,张树峰.Internet测量与分析综述[J].软件学报,2003,14(1):110-116. 被引量:109
  • 4Chadi Barakat, Patrick Thiran, Gianluca Iannaccone, et al. A flow-based model for Internet backbone traffic [C]//Proc of IMW'02. New York: ACM, 2002: 35-47 被引量:1
  • 5Basu S, Mukherjee A. Time series models for Internet traffic [C] //Proc of IEEE INFOCOM'96. Piscataway, NJ: IEEE, 1996:611-620 被引量:1
  • 6Konstantina Papagiannaki, Nina Taft, Zhang Zhili, et al. Long-term forecasting of Internet backbone traffic: Observations and initial models pC] //Proc of IEEE Infocom 2003. Piscataway, NJ: IEEE, 2003:1110-1124 被引量:1
  • 7邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652. 被引量:107
  • 8Vern Paxson, Sally Floyd. Wide area traffic: The failure of Poisson modeling [J]. IEEE ACM Trans on Networking, 1995, 3(3): 226-244 被引量:1
  • 9Lan K C, Heidemann J. A measurement study of correlations of Internet flow characteristics [J]. Computer Networks; The International Journal of Computer and Telecommunications Networking, 2006, 50 (1) : 46-62 被引量:1
  • 10Leland W, Taqqu M, Willinger W, et al. On the self-similar nature of Ethernet Traffic [J]. IEEE/ACM Trans on Networking, 1994, 2(1): 1-15 被引量:1

二级参考文献12

  • 1罗发龙,李衍达.神经网络信号处理研究评述[J].电子瞭望,1993(9):5-10. 被引量:13
  • 2王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992.. 被引量:1
  • 3[1]Paxson V. End-to-End routing behavior in the Internet. IEEE/ACM Transactions on Networking, 1997,5(5):601~615. 被引量:1
  • 4[2]Kalidindi S, Zekauskas MJ. Surveyor: an infrastructure for Internet performance measurements. In: Proceedings of the INET'99. San Jose, 1999. http://www.isoc.org/inet99/proceedings/4h/4h_2.htm. 被引量:1
  • 5[3]Claffy K, Monk TE, McRobb D. Internet tomography. Nature, 1999, January 7. http://www.nature.com/nature/webmatters/tomog/ tomog.html. 被引量:1
  • 6[4]Burch H, Cheswick B. Mapping the Internet. IEEE Computer, 1999,32(4):97~98. 被引量:1
  • 7[5]Wolski R, Spring N, Hayes J. The network weather service: a distributed resource performance forecasting service for metacomputing. Journal of Future Generation Computing Systems, 1999,15(5):757~768. 被引量:1
  • 8[6]Chang H, Jamin S, Willinger W. Inferring AS-level Internet topology from router-level path traces. In: Proceedings of the SPIE ITCom 2001. 2001. http://citeseer.nj.nec.com/chang01inferring.html. 被引量:1
  • 9[7]Govindan R, Tangmunarunkit H. Heuristics for Internet map discovery. In: Proceedings of the IEEE INFOCOM 2000, Vol 3. 2000. 1371~1380. http://citeseer.nj.nec.com/govindan00heuristics.html. 被引量:1
  • 10[8]Munzner T. Interactive visualization of large graphs and networks [Ph.D. Thesis]. Stanford University, 2000. 被引量:1

共引文献315

同被引文献75

引证文献8

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部