摘要
研究随机时滞系统的时滞相关无源性分析和控制问题.利用Lyapunov-Krasovskii方法和松弛矩阵方法,得到时滞相关的无源性条件.基于该条件设计时滞相关的随机无源控制器.文中的结果以线性矩阵不等式(Linearmatrix inequalities,LMIs)表示,可以利用标准的凸优化算法进行有效求解.通过一个数值例子说明本文方法的有效性.
This paper investigates delay-dependent passive analysis and control for stochastic delay systems. Delaydependent stochastic passive condition for the stochastic timedelay systems is obtained by employing Lyapunov-Krasovskii approach and slack matrix technique. Based on this condition, a delay-dependent passive controller is presented. The proposed results are formulated in terms of linear matrix inequalities (LMIs), which can be efficiently solved by standard convex optimization algorithms. A numerical example is provided to demonstrate the effectiveness of the method.
出处
《自动化学报》
EI
CSCD
北大核心
2009年第3期324-327,共4页
Acta Automatica Sinica
基金
国家自然科学基金重点项目(60434020)
浙江省教育厅科研项目(Y200701897)资助~~
关键词
随机时滞系统
无源性
时滞相关
线性矩阵不等式
Stochastic delay systems, passivity, delaydependent, linear matrix inequality (LMI)