期刊文献+

基于BP神经网络的降雨充水矿井涌水量预测 被引量:14

Prediction of water inflow of mine with rainfall yield based on BP artificial neural network
下载PDF
导出
摘要 长沟峪煤矿矿井涌水量受降雨影响显著,曾经因降雨造成淹井事故。文章分析了长沟峪煤矿矿井充水因素及其影响程度,建立了矿井涌水量预测的BP网络模型,通过对2006年和2007年+141水平和+20水平矿井最大涌水量预测验证了该模型的可行性,并据此对不同降雨条件下的矿井涌水量进行了预测。 Water yield of coal mine was significantly influenced by rainfall in Chang-gou-yu Coal Mine, the accidents of flooding well had happened. In this paper, water filling factors of mine and it' s influence degree were analyzed and BP artificial neural network was used. The prediction model of mine inrush water in chang-gou-yu mine was also established. The model was verified by predicting the most water yield of + 141 and + 20 level roadway in 2006 and 2007 respectively, and water yield of mine in chang-gou-yu coal mine was predicted for different rainfall based on the model.
出处 《中国地质灾害与防治学报》 CSCD 2009年第1期122-125,共4页 The Chinese Journal of Geological Hazard and Control
关键词 BP神经网络 降雨入渗 矿井涌水量 预测模型 长沟峪煤矿 BP artificial neural network rainfall infiltration mine water discharge prediction model Changgouyu Coal Mine
  • 相关文献

参考文献7

二级参考文献14

共引文献96

同被引文献168

引证文献14

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部