摘要
首先给出广义Kuramoto_Sivashinsky(GKS)方程周期初边值问题在H2空间惯性集的构造,进而给出并证明GKS方程吸引子的分形结构,同时发现吸引子的一个分形局部化指数型逼近序列·上述结果精细和推进了[1,3,5,7]关于惯性集和吸引子的结论。
In this paper, the generalized Kuramoto_Sivashinsky equations (GKS) with periodic initial boundary value problem are considered and the construction of inertial sets in space H 2 is given. Furthemore, this paper gives and proves the fractal structure of attractors for GKS equations, and find out an exponentially approximating sequence of compact fractal localizing sets of the attractors, these results sharpen and improve the conclusions of the inertial sets and attractor for GKS equation in [1,3,5,7],which describe a kind of geometrical structure of the attractors.
出处
《应用数学和力学》
CSCD
北大核心
1998年第3期243-256,共14页
Applied Mathematics and Mechanics
基金
国家自然科学基金
云南省基金