摘要
In this note we first show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd category L^LyD(π) over a crossed Hopf group-coalgebra L, then its dual H^* is also a Hopf algebra in the category L^LyD(π). Then we establish the fundamental theorem of Hopf modules for H in the category L^LyD(π).
In this note we first show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd category L^LyD(π) over a crossed Hopf group-coalgebra L, then its dual H^* is also a Hopf algebra in the category L^LyD(π). Then we establish the fundamental theorem of Hopf modules for H in the category L^LyD(π).
基金
the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060286006)
the National Natural Science Foundation of China (No. 10571026).