期刊文献+

基于支持向量机的指纹图像质量分类方法 被引量:4

Quality Classification Method for Fingerprint Image Based on Support Vector Machine
原文传递
导出
摘要 指纹图像的质量测量与评价,在指纹图像分割、增强及指纹匹配等环节都有重要应用.同时,指纹图像的质量分类,对指纹识别算法的适用性研究也有重要意义.本文提出一种基于支持向量机的指纹图像质量分类方法.该方法选择梯度、Gabor特征、方向对比度等指标,利用支持向量机有效实现指纹图像质量分类.并采用少类样本合成过采样技术(SMOTE)降低指纹图像质量好坏的类别不平衡问题对分类的影响.理论分析和实验结果都表明该方法能够较为有效地提高指纹图像质量分类的正确率. In an automatic fingerprint identification system, estimating the quality of fingerprint image has significant value for segmentation, enhancement and matching processes. Besides, the quality classification of fingerprint image is of paramount significance in the applicability research of fingerprint recognition algorithm. In this paper, a method for quality classification of fingerprint image is proposed based on the support vector machine (SVM). The gradient, Gabor feature, and directional contrast are used as the quality index, and SVM is applied to achieve quality classification of fingerprint image. Meanwhile, synthetic minority over sampling technique (SMOTE) method is employed to reduce the influence of class imbalance problem. Both the theoretical analysis and the experimental results indicate the validity of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期129-135,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60403010) 山东省优秀中青年科学家科研奖励基金项目(No.2006BS01008) 山东省科技攻关项目(No.2005GG3201089) 山东省高新技术自主创新工程专项项目(No.2007ZCB01030)资助
关键词 指纹 图像质量 质量分类 支持向量机 少类样本合成过采样技术(SMOTE) Fingerprint, Image Quality, Quality Classification Minority Over Sampling Technique (SMOTE) , Support Vector Machine, Synthetic
  • 相关文献

参考文献25

  • 1Galton F. Finger Prints. New York, USA: Da Capo Press, 1961 被引量:1
  • 2Lee H C, Gaensslen R E. Advances in Fingerprint Technology. New York, USA: Elsevier, 1991 被引量:1
  • 3Yun E K, Cho S B. Adaptive Fingerprint Image Enhancement with Fingerprint Image Quality Analysis. International Vacuum Congress, 2006, 24(1) : 101 -110 被引量:1
  • 4Julian F A, Chen Yi, Javier O G, et al. Incorporating Image Quality in Multi-Algorithm Fingerprint Verification // Proc of the International Conference on Biometrics. Hongkong, China, 2006:213 - 220 被引量:1
  • 5Chen Yi, Dass S C, Jain A K. Fingerprint Quality Indices for Predicting Authentication Performance// Proc of the 5th International Conference on Audio-and Video-Based Biometric Person Authentication. Hilton Rye Town, UK, 2005 : 160 - 170 被引量:1
  • 6Jain A K, Prabhakar S, Hong Lin, et al. Filterbank-Based Fingerprint Matching. IEEE Trans on Image Processing, 2000, 9 ( 5 ) : 846 - 859 被引量:1
  • 7Marana A N, Jain A K. Ridge-Based Fingerprint Matching Using Hough Transform//Proc of the XVIII Brazilian Symposium on Computer Graphics and Image Processing. Natal, Brazil, 2005 : 112 - 119 被引量:1
  • 8Jain A K, Prabhakar S, Hong Lin. A Multichannel Approach to Fingerprint Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21 (4) : 348 -359 被引量:1
  • 9Hang Lin, Wan Yifei, Jain A. Fingerprint Image Enhancement: Algorithms and Performance Evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(8) : 777 -789 被引量:1
  • 10Shen Linlin, Kot A, Koo W M. Quality Measures of Fingerprint Images// Proc of the 3rd International Conference on Audio-and Video-Based Biometric Person Authentication. Halmstad, Sweden, 2001 : 266 -271 被引量:1

二级参考文献7

  • 1Schapire R E. The strength of weak learnability[J].Machine Learning, 1990, 5(2): 197-227. 被引量:1
  • 2Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140. 被引量:1
  • 3Zhou Z H, Wu J X, Jiang Y, et al. Genetic algorithm based selective neural network ensemble [A]. In: Cohn A G, ed.Proceedings of the 17th International Joint Conference on Artificial Intelligence [C]. Seattle, WA:Morgan Kaufmann Publishers,2001. 797-802. 被引量:1
  • 4Zhou Z H, Wu J X, Tang W. Ensembling neural networks: Many could be better than all[J]. Artificial Intelligence, 2002, 137(1,2): 239-263. 被引量:1
  • 5Mitra P, Murthy C A, Pal S K. Unsupervised feature selection using feature similarity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 301-312. 被引量:1
  • 6Blake C, Keogh E, Merz C J. UCI repository of machine learning databases[EB/OL]. Http://www.ics.uci.edu/ mlearn/MLRepository.htm,2003-12-12. 被引量:1
  • 7Demuth H, Beale M. Neural network toolbox User's guide for use with MATLAB [M].4th Ed.Natick,USA:The Mathworks Inc, 2001. 被引量:1

共引文献14

同被引文献27

  • 1申红,吕宝粮,内山将夫,井佐原均.文本分类的特征提取方法比较与改进[J].计算机仿真,2006,23(3):222-224. 被引量:28
  • 2刘映杰,马义德,冯晓兰,杜鸿飞.Gabor滤波器在基于细节点的指纹识别中的应用[J].计算机测量与控制,2007,15(1):132-134. 被引量:7
  • 3JAIN A K, ROSS A, PRABHAKAR S. An introduction to biometric recognition [ J ]. IEEE Trans on Circuits and Systems for Video Tech, 2004, 14( 1 ) :4-20. 被引量:1
  • 4CHEN Y, DASS S, JAIN A K. Fingerprint quality indices for predicting authentication performance [ C ]// Proceedings of Audio-and Video-based Biometric Person Authentication. Heidelberg, Germany: Springer, 2005 : 160- 170. 被引量:1
  • 5TABASSI E, WILSON C L. A novel measure of fingerprint image quality using fourier spectrum[C]//Proceedings of SPIE. Bellingham, WA: SPIE, 2005 : 105-112. 被引量:1
  • 6ALONSO-FEMANDEZ F, FIERREZ-AGUILAR J, ORTEGA-GARCIA J, et al. A comparative study of fmgerprint image-quality estimation methods [ J ]. IEEE Trans on Information Forensics and Security, 2007, 2 (4) :734- 743. 被引量:1
  • 7BOLLE R M, PANKANTI S U, YAO Y S. System and method for determining the quality of fingerprint images: United State, US596356 [ P]. 1999-10-05. 被引量:1
  • 8ALONSO-FEMANDEZ F, FIERREZ-AGUILAR J, ORTEGA-GARCIA J. A review of schemes for fingerprint image quality computation [ C ]// Proceedings of 2nd COST-275 Workshop on Biometrics on the Internet. Vigo, Spain: COST, 2005: 3-6. 被引量:1
  • 9LIU L H, TAN T Z, ZHAN Y W. Based on SVM automatic measures of fingerprint image quality [ C ]// Proceedings of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. [ S.l. ] : IEEE Computer Society Press, 2008: 575-578. 被引量:1
  • 10YUN E K, CHO S B. Adaptive fingerprint image enhancement with fingerprint image quality analysis [ J ]. Image and Vision Computing, 2006, 24:101-110. 被引量:1

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部