期刊文献+

组合优化中整数规划的数论解法 被引量:2

New method based on number theory for integer programming of combinatorial optimization
下载PDF
导出
摘要 整数规划属于计算机组合优化中的重要方法。目前求解整数规划的方法主要有割平面法和分枝定界法。前者往往收敛很慢甚至不收敛,后者不适用自变量较多的问题。从一种全新的视角出发,使用数论中的不定方程理论,来提出一种高效的整数规划新解法。该方法先把目标函数可能取的整数值添加作一个新的约束条件,然后让依次增大。使用不定方程理论,并结合自变量的取值范围,该方法能迅速发现没有意义的,从而大大减少计算量。该方法还不用求解整数规划相应的松弛线性规划问题。因此这种基于数论的整数规划解法速度很快,是一种较有前途的方法。最后针对典型的问题给出算例进行分析验证。 Integer programming is most important method of computer combinatorial optimization. The prime methods for integer pro- gramming are the cutting plane method and the branch-and-bound method. The former converges rather slowly, even does not converge. The latter is not competent for the situations where there exist many variables. Having taken a novel view into account, a new efficient method for integer programming is proposed in this work, on the basis of indeterminate equation of number theory. The value k of objective function is considered as a new constraint, then it is increased gradually. Using the indeterminate equation theory and taking the domain of variables into account, the new method could fast find the unmeaning k, so that it could decrease a larger amount of calculation. It is not required to solve the associated linear programming relaxation of an integer programming in the new method. Consequently, the method is rather fast and promising. Finally, a classical example is used for analysis and test.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第5期1276-1278,共3页 Computer Engineering and Design
关键词 组合优化 整数规划 线性规划 数论 不定方程 combinatorial optimization integer programming linear programming number theory indeterminate equation
  • 相关文献

参考文献8

二级参考文献8

  • 1贺毅朝,刘坤起.求解SAT问题的改进粒子群优化算法[J].计算机工程与设计,2006,27(15):2731-2733. 被引量:7
  • 2周明 孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,2001.. 被引量:8
  • 3刘勇,康立山.非数值并行算法(二)-遗传算法[M].北京:科学出版社,2003. 被引量:4
  • 4Frans Van den Bergh.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2001. 被引量:1
  • 5Clec M,Kennedy J.The particle swarm-explosion stability and convergence in amultidim-ensional complex space[J].IEEE Transaction on Evolutionary Computation,2002,6(1):58-73. 被引量:1
  • 6Knnedy J,Eberhart R C.Swarm intelligence[M].Morgan Kaufmann Publishers,2001. 被引量:1
  • 7Sedgewick R,Flajolet P.An introduction to the analysis of algorithms[M].Boston:Addison-Wesley Publishing Company Inc,1999. 被引量:1
  • 8Fred Glover.Cut search methods in integer programming[J].Mathematical Programming.1972(1) 被引量:1

共引文献28

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部